首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world''s oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world''s oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51–92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.  相似文献   

2.
Metagenomics has opened new windows on investigating viral diversity and functions. Viromic studies typically require large sample volumes and filtration through 0.2 μm pore-size filters, consequently excluding or under-sampling tailed and very large viruses. We have optimized a targeted viromic approach that employs fluorescence-activated sorting and whole genome amplification to produce dsDNA-enriched libraries from discrete viral populations from a 1-ml water sample. Using this approach on an environmental sample from the Patagonian Shelf, we produced three distinct libraries. One of the virus libraries was dominated (79.65% of sequences with known viral homology) by giant viruses from the Mimiviridae and Phycodnaviridae families, while the two other viromes were dominated by smaller phycodnaviruses, cyanophages and other bacteriophages. The estimated genotypic richness and diversity in our sorted viromes, with 52–163 estimated genotypes, was much lower than in previous virome reports. Fragment recruitment of metagenome reads to selected reference viral genomes yields high genome coverage, suggesting little amplification and sequencing bias against some genomic regions. These results underscore the value of our approach as an effective way to target and investigate specific virus groups. In particular, it will help reveal the diversity and abundance of giant viruses in marine ecosystems.  相似文献   

3.
The great majority of plant viruses encapsidate messenger-sense ssRNA and have no natural DNA phase in their life cycle. Despite their RNA nature, essentially any desired change can be introduced into such genomes by using recombinant DNA techniques with suitably constructed, expressible viral cDNA clones. For some viruses such as brome mosaic virus, these methods have been used to define the sequences controlling RNA-directed genomic RNA replication and the expression of internal genes via subgenomic mRNAs. The results suggest a surprising degree of genetic flexibility, which appears to be reflected in the varied gene complements and genetic organizations of presumably related plant and animal RNA viruses sharing conserved replication genes. Foreign genes inserted in such RNA virus genomes can be amplified and expressed to a high level in transfected plant cells. In addition to the potential use of such viruses as episomal expression vectors, it should be possible to couple the viral pathways of RNA-dependent RNA synthesis to amplify and to further regulate the expression of genes transformed into plant chromosomes.  相似文献   

4.
The role of autochthonous viruses in the regulation of bacterioplantkon abundance and production was studied in the Rybinsk Reservoir. During the ice-free period, the number of virus-like particles varied within the range of (11.0–57.4) × 106 particles/ml. The virus to bacterioplankton abundance ratio ranged within 3.0–9.4. From 4 to 25% of bacterioplankton was infected by phages. A single infected cell contained up to 80 mature virus particles. The phage-induced bacterioplankton mortality in different parts of the reservoir constituted 3.7–41.8% (22.5% on average) of bacterioplankton daily production. Heterotrophic flagellates grazed from 7.6 to 68.8% (27.5% on average) of the daily bacterial production. Thus, along with flagellates, viruses are an important factor controlling bacterioplankton development in the reservoir.  相似文献   

5.
The tetracycline resistance determinant in transposon Tn10 consists of two genes, the tetA resistance gene and the tetR repressor gene, that are transcribed from divergent overlapping promoters. We determined the levels of pulse-labeled tet messenger RNA in Escherichia coli strains with the Tn10 tet genes on a multicopy plasmid. Addition of the inducer 5a,6-anhydrotetracycline results in a 270- to 430-fold increase in tetA mRNA and a 35- to 65-fold increase in tetR mRNA. As judged by the relative molar amounts of tetA and tetR mRNA synthesized under maximally inducing conditions, the tetA promoter (tetPA) is 7 to 11 times more active than the two tetR promoters (tetPR1 and tetPR2) combined. We characterized ten mutations in tetPA, including nine single-base-pair substitutions and a 30-base-pair deletion. All of the single-base-pair changes reduce the agreement with the consensus sequence for promoters recognized by E. coli RNA polymerase. Mutations in highly conserved nucleotides result in a 200- to 600-fold reduction in tetPA activity in vivo. Unexpectedly, tetPA mutations reduce by two- to fourfold the combined activity in vivo of tetPR1 and tetPR2, in spite of their locations outside the -35 and -10 regions of tetPR1 and tetPR2. For two tetPA mutations, the negative effect on tetPR activity was also demonstrated in tetR- tetPR-lacZ operon fusion strains, thus eliminating the possibility that it is due to variations in either plasmid copy-number or induction efficiency. The pleiotropic effects of tetPA mutations are discussed in terms of the expectation that the overlapping tet promoters compete for RNA polymerase.  相似文献   

6.
云南甘薯病毒的检测及主要病毒的多样性分析   总被引:2,自引:0,他引:2  
[目的]明确云南甘薯病毒的种类,并对主要病毒进行遗传多样性分析.[方法]利用PCR/RT-PCR技术,对采自云南16个县、市的279个甘薯样品进行扩增、测序,对所得序列应用分子生物学软件MEGA 5进行系统发育分析.[结果]除普洱和祥云的样品中未检测到任何病毒外,其余14个县、市的123个甘薯样品中共检测到甘薯褪绿斑病毒(SPCFV)、甘薯羽状斑驳病毒(SPFMV)、甘薯卷叶病毒(SPLCV)、甘薯C病毒(SPVC)、甘薯G病毒(SPVG)和甘薯病毒2号(SPV2)等6种病毒.其中SPVG的检出率最高,达39.1%,为云南甘薯病毒的优势种,SPFMV和SPVC的检出率分别为26.9%和24.7%,而SPLCV检出率最低,仅为0.4%.在所检测的样品中未发现甘薯褪绿矮化病毒(SPCSV)和甘薯轻斑驳病毒(SPMMV).云南甘薯病毒多数为2-5种病毒复合侵染,占总样品数的31.9%,其中2-3种病毒复合侵染现象最为常见,单一病毒侵染占总样品数的12.2%.检出率比较低的SPCFV、SPLCV和SPV2未发现单独侵染现象.[结论]云南甘薯上发生的SPFMV分离物存在EA株系和O株系,未发现RC株系,另有两个分离物同EA、O、RC之间的亲缘关系均较远,有可能是一个新的株系;SPVC和SPVG分离物均可分为3个不同的组,大部分SPVG云南分离物属于Ⅰ组.  相似文献   

7.
8.
9.
Fungi are the principal degraders of biomass in most terrestrial ecosystems. In contrast to surface environments, deep-sea environmental gene libraries have suggested that fungi are rare and non-diverse in high-pressure marine environments. Here, we report the diversity of fungi from 11 deep-sea samples from around the world representing depths from 1,500 to 4,000 m (146-388 atm) and two shallower water column samples (250 and 500m). We sequenced 239 clones from 10 fungal-specific 18S rRNA gene libraries constructed from these samples, from which we detected only 18 fungal 18S-types in deep-sea samples. Our phylogenetic analyses show that a total of only 32 fungal 18S-types have so far been recovered from deep-sea habitats, and our results suggest that fungi, in general, are relatively rare in the deep-sea habitats we sampled. The fungal diversity detected suggests that deep-sea environments host an evolutionarily diverse array of fungi dominated by groups of distantly related yeasts, although four putative filamentous fungal 18S-types were detected. The majority of our new sequences branch close to known fungi found in surface environments. This pattern contradicts the proposal that deep-sea and hydrothermal vent habitats represent ancient ecosystems, and demonstrates a history of frequent dispersal between terrestrial and deep-sea habitats.  相似文献   

10.
Myc-related proteins were precipitated from MC29 virus-transformed cells (PR-2) and from OK10 virus-transformed cells (9C) by anti-gag and anti-myc sera. Immunoprecipitates were cleaved with the avian retroviral protease p15 and the cleavage products analyzed in SDS-PAGE. Cleavage fragments of p110gag-myc (product of MC29 virus) and p58myc (product of OK10 virus) showed the presence of a p15 cleavage site within the myc-specific region. The site is missing in deletion mutants of MC29 virus.  相似文献   

11.
RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.  相似文献   

12.
White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.  相似文献   

13.
HaRNAV, a novel virus that infects the toxic bloom‐forming alga Heterosigma akashiwo (Hada) Hada ex Hada et Chihara, was characterized based on morphology, pathology, nucleic acid type, structural proteins, and the range of host strains that it infects. HaRNAV is a 25‐nm single‐stranded RNA (ssRNA) virus with a genome size of approximately 9100 nucleotides. This is the first report of an ssRNA virus that causes lysis of a phytoplankton species. The virus particle is sensitive to chloroform and contains at least five structural proteins ranging in apparent size from 24 to 34 kDa. HaRNAV infection causes swelling of the endoplasmic reticulum and progeny virus particles assemble in the cytoplasm of the host, frequently in crystalline arrays. The infectivity of HaRNAV was tested against 15 strains of H. akashiwo isolated from Japanese waters, the Northeast Pacific, and the Northwest Atlantic. HaRNAV caused lysis of three strains from the Northeast Pacific and two strains from Japan but none from the Northwest Atlantic. The characterization of HaRNAV demonstrates that HaRNAV is a novel type of phytoplankton virus but has some similarities with plant viruses belonging to the Sequiviridae and to other known ssRNA viruses. Further genomic analysis, however, is necessary to determine any phylogenetic relationships. The discovery of HaRNAV emphasizes the diversity of H. akashiwo viral pathogens and, more importantly, algal–virus pathogens and the complexity of virus–host interactions in the environment.  相似文献   

14.
SUMMARY 1. Viral and bacterial abundances were studied in relation to environmental attributes over an annual period, for both planktonic and attached (sediment, aquatic macrophyte and submerged wood) habitats, in a riverine wetland.
2. Annual mean abundance of planktonic viruses ranged from 2.3 × 105−3.8 × 105 particles mL−1 and varied according to sampling site. Significant seasonal patterns in viral abundance were evident and appeared to be linked to variations in bacterial abundance, dissolved organic carbon and inorganic nutrients.
3. Annual mean abundance of viruses associated with surfaces ranged from 1.3 × 106 particles cm−2 on aquatic macrophytes to 1.1 × 107 particles cm−2 on wood and also showed seasonal patterns. The difference in viral dynamics among the different sites emphasizes the importance of considering habitat diversity within wetlands when examining microbial communities.  相似文献   

15.
The power of novel vaccination technologies and their rapid development were elucidated clearly during the COVID-19 pandemic. At the same time, it also became clear that there is an urgent need to discover and manufacture new antivirals that target emerging viral threats. Toxic species of cyanobacteria produce a range of bioactive compounds that makes them good candidates for drug discovery. Nevertheless, few studies demonstrate the antiviral potential of cyanobacteria. This is partly due to the lack of specific and simple protocols designed for the rapid detection of antiviral activity in cyanobacteria and partly because specialized facilities for work with pathogenic viruses are few and far between. We therefore developed an easy method for the screening of cyanobacterial cultures for antiviral activity and used our private culture collection of non-pathogenic virus isolates to show that antiviral activity is a prominent feature in the cyanobacterium Microcystis aeruginosa. In this proof-of-concept study, we show that M. aeruginosa extracts from three different cyanobacterial strains delay infection of diatom-infecting single-stranded DNA and single-stranded RNA viruses by up to 2 days. Our work shows the ease with which cyanobacteria from culture collections can be screened for antiviral activity and highlights the potential of cyanobacteria as an excellent source for the discovery of novel antiviral compounds, warranting further investigation.  相似文献   

16.
17.
BACKGROUND: Viral vectors are required as gene-delivery systems for gene therapy and basic research. Recombinant adenoviruses (rAds) expressing genes of interest are being developed as research tools and many studies in vitro and in vivo have already been performed with such rAds. METHODS: Shuttle vectors for rAds were constructed with full-length cDNAs and rAds were generated in HEK293 cells by the COS-TPC method. The rAds and shuttle vectors were developed by the Japanese research community and deposited in the RIKEN DNA Bank (RDB; http://www.brc.riken.jp/lab/dna/en/) for distribution to the scientific community. The Recombinant Virus Database (RVD; http://www.brc.riken.jp/lab/dna/rvd/) was established at the RIKEN BioResource Center (BRC) in Japan as the source of information about and distribution of the various resources. RESULTS: The RIKEN BRC is releasing more than 300 recombinant viruses (RVs) and 500 shuttle vectors, as well as all related information, which is included in a newly established database, the RVD. The RVD consists of (i) information about the RVs, the inserted cDNAs and the shuttle vectors; (ii) data about sequence-tagged sites (STSs) that are markers of viral DNAs; and (iii) experimental protocols for the use of RVs. CONCLUSIONS: The new database and available resources should be very useful to scientists who are studying human gene therapy and performing related basic research. It is a web-interfaced flat-file database that can be accessed through the internet. Moreover, all of the resources deposited in the RDB, which is a public facility in Japan, are available to researchers around the world.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号