首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SgrS is a small RNA (sRNA) that requires the RNA chaperone Hfq for its function. SgrS is a unique dual-function sRNA with a base pairing function that regulates mRNA targets and an mRNA function that allows production of the 43-amino-acid protein SgrT. SgrS is expressed when non-metabolizable sugars accumulate intracellularly (glucose-phosphate stress) and is required to allow Escherichia coli cells to recover from stress. In this study, homologs of SgrS were used to complement an E. coli sgrS mutant in order elucidate the physiological relevance of differences among homologs. These analyses revealed that the base pairing function of E. coli and Yersinia pestis SgrS homologs is critical for rescue from glucose-phosphate stress. In contrast, base pairing-deficient SgrS homologs from Salmonella typhimurium, Erwinia carotovora and Klebsiella pneumoniae rescue E. coli cells from stress despite their failure to regulate target mRNAs. Compared with E. coli SgrS, S. typhimurium SgrS produces more SgrT and this rescues cell growth even when the base pairing function is inactivated. Genetic evidence suggests that a secondary structure in the E. coli SgrS 5′ region inhibits sgrT translation. This structure is not present in S. typhimurium SgrS, which explains its higher level of SgrT production.  相似文献   

2.
3.
当细菌面对较高浓度的葡萄糖时,随着葡萄糖摄入,常会导致菌体内部葡糖-6-磷酸的大量累积。在磷酸糖浓度达到一定阈值时,就会形成一种毒性胁迫从而抑制菌体的代谢与生长。许多细菌则会通过一种小RNA SgrS (sugar transport-related sRNA)的转录后调控作用,来解除这种糖胁迫抑制作用。SgrS在分子伴侣Hfq的协助下,与相应靶mRNA通过碱基互补配对方式结合,对ptsG mRNA和manXYZ mRNA进行负调控以减少糖类摄入,并对yigL mRNA进行正调控以增大糖类排出,从而提高细胞对糖胁迫的耐受性。与一般sRNA不同,SgrS作为一种双功能sRNA,除具有转录后调控功能外,还能够翻译出蛋白质SgrT。SgrS广泛存在于肠杆菌中,但不同菌属中SgrS的差异极大。本文主要对SgrS在细菌中的功能、分布及其差异进行综述。  相似文献   

4.
Cells use complex mechanisms to regulate glucose transport and metabolism to achieve optimal energy and biomass production while avoiding accumulation of toxic metabolites. Glucose transport and glycolytic metabolism carry the risk of the buildup of phosphosugars, which can inhibit growth at high concentrations. Many enteric bacteria cope with phosphosugar accumulation and associated stress (i.e., sugar-phosphate stress) by producing a small RNA (sRNA) regulator, SgrS, which decreases phosphosugar accumulation in part by repressing translation of sugar transporter mRNAs (ptsG and manXYZ) and enhancing translation of a sugar phosphatase mRNA (yigL). Despite a molecular understanding of individual target regulation by SgrS, previously little was known about how coordinated regulation of these multiple targets contributes to the rescue of cell growth during sugar-phosphate stress. This study examines how SgrS regulation of different targets impacts growth under different nutritional conditions when sugar-phosphate stress is induced. The severity of stress-associated growth inhibition depended on nutrient availability. Stress in nutrient-rich media necessitated SgrS regulation of only sugar transporter mRNAs (ptsG or manXYZ). However, repression of transporter mRNAs was insufficient for growth rescue during stress in nutrient-poor media; here SgrS regulation of the phosphatase (yigL) and as-yet-undefined targets also contributed to growth rescue. The results of this study imply that regulation of only a subset of an sRNA''s targets may be important in a given environment. Further, the results suggest that SgrS and perhaps other sRNAs are flexible regulators that modulate expression of multigene regulons to allow cells to adapt to an array of stress conditions.  相似文献   

5.
Escherichia coli SgrS is an Hfq‐binding small RNA that is induced under glucose‐phosphate stress to cause translational repression and RNase E‐dependent rapid degradation of ptsG mRNA encoding the major glucose transporter. A 31‐nt‐long stretch in the 3′ region of SgrS is partially complementary to the translation initiation region of ptsG mRNA. We showed previously that SgrS alone causes translational repression when pre‐annealed with ptsG mRNA by a high‐temperature treatment in vitro. Here, we studied translational repression of ptsG mRNA in vitro by synthetic RNA oligonucleotides (oligos) to define the SgrS region required for translational repression. We first demonstrate that a 31 nt RNA oligo corresponding to the base‐pairing region is sufficient for translational inhibition of ptsG mRNA. Then, we show that RNA oligo can be shortened to 14 nt without losing its effect. Evidence shows that the 14 nt base‐pairing region is sufficient to inhibit ptsG translation in the context of full‐length SgrS in vivo. We conclude that SgrS 168–181 is a minimal base‐pairing region for translational inhibition of ptsG mRNA. Interestingly, the 14 nt oligo efficiently inhibited ptsG translation without the high‐temperature pre‐treatment, suggesting that remodelling of structured SgrS is an important mechanism by which Hfq promotes the base pairing.  相似文献   

6.
7.
8.
9.
A number of bacterial small RNAs (sRNAs) act as global regulators of stress responses by controlling expression of multiple genes. The sRNA SgrS is expressed in response to glucose-phosphate stress, a condition associated with disruption of glycolytic flux and accumulation of sugar-phosphates. SgrS has been shown to stimulate degradation of the ptsG mRNA, encoding the major glucose transporter. This study demonstrates that SgrS regulates the genes encoding the mannose and secondary glucose transporter, manXYZ. Analysis of manXYZ mRNA stability and translation in the presence and absence of SgrS indicate that manXYZ is regulated by SgrS under stress conditions and when SgrS is ectopically expressed. In vitro footprinting and in vivo mutational analyses showed that SgrS base pairs with manXYZ within the manX coding sequence to prevent manX translation. Regulation of manX did not require the RNase E degradosome complex, suggesting that the primary mechanism of regulation is translational. An Escherichia coli ptsG mutant strain that is manXYZ(+) experiences stress when exposed to the glucose analogs α-methyl glucoside or 2-deoxyglucose. A ptsG manXYZ double mutant is resistant to the stress, indicating that PTS transporters encoded by both SgrS targets are involved in taking up substrates that cause stress.  相似文献   

10.
The importance of small RNA (sRNA) regulators has been recognized across all domains of life. In bacteria, sRNAs typically control the expression of virulence and stress response genes via antisense base pairing with mRNA targets. Originally dubbed “non-coding RNAs,” a number of bacterial antisense sRNAs have been found to encode functional proteins. Although very few of these dual-function sRNAs have been characterized, they have been found in both gram-negative and gram-positive organisms. Among the few known examples, the functions and mechanisms of regulation by dual-function sRNAs are variable. Some dual-function sRNAs depend on the RNA chaperone Hfq for base pairing-dependent regulation (riboregulation); this feature appears so far exclusive to gram-negative bacterial sRNAs. Other variations can be found in the spatial organization of the coding region with respect to the riboregulation determinants. How the functions of encoded proteins relate to riboregulation is for the most part not understood. However, in one case it appears that there is physiological redundancy between protein and riboregulation functions. This mini-review focuses on the two best-studied bacterial dual-function sRNAs: RNAIII from Staphylococcus aureus and SgrS from Escherichia coli and includes a discussion of what is known about the structure, function and physiological roles of these sRNAs as well as what questions remain outstanding.  相似文献   

11.
12.
13.
GcvB is an archetypal multi-target small RNA regulator of genes involved in amino acid uptake or metabolism in enteric bacteria. Included in the GcvB regulon is the yifK locus, encoding a conserved putative amino acid transporter. GcvB inhibits yifK mRNA translation by pairing with a sequence immediately upstream from the Shine-Dalgarno motif. Surprisingly, we found that some target sequence mutations that disrupt pairing, and thus were expected to relieve repression, actually lower yifK expression and cause it not to respond to GcvB variants carrying the corresponding compensatory changes. Work prompted by these observations revealed that the GcvB target sequence in yifK mRNA includes elements that stimulate translation initiation. Replacing each base of an ACA trinucleotide near the center of the target sequence, by any other base, caused yifK expression to decrease. Effects were additive, with some triple replacements causing up to a 90% reduction. The enhancer activity did not require the ACA motif to be strictly positioned relative to the Shine-Dalgarno sequence, nor did it depend on a particular spacing between the latter and the initiating AUG. The dppA mRNA, another GcvB target, contains four ACA motifs at the target site. Quite strikingly, replacement of all four ACAs by random trinucleotide sequences yielded variants showing over 100-fold reduction in expression, virtually inactivating the gene. Altogether, these data identify the ACA motif as a translation-enhancing module and show that GcvB''s ability to antagonize the enhancer function in target mRNAs is quintessential to the regulatory effectiveness of this sRNA.  相似文献   

14.
SgrS is an Hfq-binding small antisense RNA that is induced upon phosphosugar stress. It forms a ribonucleoprotein complex with RNase E through Hfq to mediate silencing of the target ptsG mRNA encoding the membrane component of the glucose-specific phosphoenolpyruvate phosphotransferase system. Although SgrS is believed to act on ptsG mRNA through base pairing between complementary regions, this was not previously tested experimentally. We addressed the question of whether SgrS indeed forms an RNA-RNA duplex with ptsG mRNA to exert its regulatory function. Specific single nucleotide substitutions around the Shine-Dalgarno (SD) sequence of ptsG completely eliminated SgrS action while compensatory mutations in SgrS restored it. A systematic mutational analysis of both ptsG and SgrS RNAs revealed that six base pairs around SD sequence of ptsG are particularly important for SgrS action. We also showed in vitro that SgrS forms a stable duplex with the ptsG mRNA, and that Hfq markedly facilitates the rate of duplex formation.  相似文献   

15.
16.
The non-coding small RNA, IhtA expressed by the obligate intracellular human pathogen Chlamydia trachomatis modulates the translation of HctA, a key protein involved in replicative to infectious cell type differentiation. Using a combination of bioinformatics and mutagenesis we sought to identify the base pairing requirement for functional repression of HctA protein expression, with an eye to applying our findings towards the identification of additional targets. IhtA is predicted to fold into a three stem:loop structure. We found that loop 1 occludes the initiation codon of hctA, while loop 2 and 3 are not required for function. This 7 nucleotide region forms G/C rich interactions surrounding the AUG of hctA. Two additional genes in the chlamydial genome, CTL0322 and CTL0097, contained some elements of the hctA:IhtA recognition sequence. The mRNA of both CTL0322and CTL0097 interacted with IhtA in vitro as measured by biolayer interferometry. However, using a CheZ reporter expression system, IhtA only inhibited the translation of CTL0322. The proposed IhtA recognition site in the CTL0322 message contains significant G/C base pairing on either side of the initiation codon while CTL0097 only contains G/C base pairing 3’ to the AUG initiation codon. These data suggest that as the functional interacting region is only 6-7nt in length that full translation repression is dependent on the degree of G/C base pairing. Additionally our results indicate that IhtA may regulate multiple mRNAs involved in the chlamydial infectious cycle.  相似文献   

17.
Nilaparvata lugens, the brown planthopper (BPH) feeds on rice phloem sap, containing high amounts of sucrose as a carbon source. Nutrients such as sugars in the digestive tract are incorporated into the body cavity via transporters with substrate selectivity. Eighteen sugar transporter genes of BPH (Nlst) were reported and three transporters have been functionally characterized. However, individual characteristics of NlST members associated with sugar transport remain poorly understood. Comparative gene expression analyses using oligo-microarray and quantitative RT-PCR revealed that the sugar transporter gene Nlst16 was markedly up-regulated during BPH feeding. Expression of Nlst16 was induced 2 h after BPH feeding on rice plants. Nlst16, mainly expressed in the midgut, appears to be involved in carbohydrate incorporation from the gut cavity into the hemolymph. Nlst1 (NlHT1), the most highly expressed sugar transporter gene in the midgut was not up-regulated during BPH feeding. The biochemical function of NlST16 was shown as facilitative glucose transport along gradients. Glucose uptake activity by NlST16 was higher than that of NlST1 in the Xenopus oocyte expression system. At least two NlST members are responsible for glucose uptake in the BPH midgut, suggesting that the midgut of BPH is equipped with various types of transporters having diversified manner for sugar uptake.  相似文献   

18.
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA–mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5ʹ untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.  相似文献   

19.
In plants, sugars affect growth and development and play an important role in the intricate machinery of signal transduction. Understanding the mechanisms behind the flux of sugar in the plant is of central interest. We recently characterized an Arabidopsis mutant: sweetie, which is defective in the control of growth and development, sterile, shows premature senescence and affects sugar metabolism. Our microarray analysis showed that 15 genes annotated as sugar transporter related proteins were found to be upregulated in sweetie while one sugar transporter gene was found to be downregulated. Most of them are unspecified sugar transporters but four genes have been annotated as monosaccharide transporters and one has been annotated as a disaccharide transporter. Moreover, as computer analyses predicted that SWEETIE might be a membrane protein and might have a function of glycosyl transferase, our data suggest that SWEETIE could be involved in the general control of sugar flux and modulates many important processes such as morphogenesis, flowering, stress responses and senescence.Key words: Arabidopsis thaliana, sweetie mutant, microarray, sugar flux, sugar transport  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号