首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Single-cell sequencing is a powerful tool for delineating clonal relationship and identifying key driver genes for personalized cancer management. Here we performed single-cell sequencing analysis of a case of colon cancer. Population genetics analyses identified two independent clones in tumor cell population. The major tumor clone harbored APC and TP53 mutations as early oncogenic events, whereas the minor clone contained preponderant CDC27 and PABPC1 mutations. The absence of APC and TP53 mutations in the minor clone supports that these two clones were derived from two cellular origins. Examination of somatic mutation allele frequency spectra of additional 21 whole-tissue exome-sequenced cases revealed the heterogeneity of clonal origins in colon cancer. Next, we identified a mutated gene SLC12A5 that showed a high frequency of mutation at the single-cell level but exhibited low prevalence at the population level. Functional characterization of mutant SLC12A5 revealed its potential oncogenic effect in colon cancer. Our study provides the first exome-wide evidence at single-cell level supporting that colon cancer could be of a biclonal origin, and suggests that low-prevalence mutations in a cohort may also play important protumorigenic roles at the individual level.  相似文献   

2.
3.

Background

Adenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of salivary gland tumors affecting the tongue. We investigated the utility of massively parallel sequencing to characterize an adenocarcinoma of the tongue, before and after treatment.

Results

In the pre-treatment tumor we identified 7,629 genes within regions of copy number gain. There were 1,078 genes that exhibited increased expression relative to the blood and unrelated tumors and four genes contained somatic protein-coding mutations. Our analysis suggested the tumor cells were driven by the RET oncogene. Genes whose protein products are targeted by the RET inhibitors sunitinib and sorafenib correlated with being amplified and or highly expressed. Consistent with our observations, administration of sunitinib was associated with stable disease lasting 4 months, after which the lung lesions began to grow. Administration of sorafenib and sulindac provided disease stabilization for an additional 3 months after which the cancer progressed and new lesions appeared. A recurring metastasis possessed 7,288 genes within copy number amplicons, 385 genes exhibiting increased expression relative to other tumors and 9 new somatic protein coding mutations. The observed mutations and amplifications were consistent with therapeutic resistance arising through activation of the MAPK and AKT pathways.

Conclusions

We conclude that complete genomic characterization of a rare tumor has the potential to aid in clinical decision making and identifying therapeutic approaches where no established treatment protocols exist. These results also provide direct in vivo genomic evidence for mutational evolution within a tumor under drug selection and potential mechanisms of drug resistance accrual.  相似文献   

4.
Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations.  相似文献   

5.
Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.  相似文献   

6.
7.
8.
9.
Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS.  相似文献   

10.
To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3′ base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma.  相似文献   

11.
《Endocrine practice》2019,25(6):580-588
Objective: To report the rate of candidate actionable somatic mutations in patients with locally advanced and metastatic gastro-enteropancreatic (GEP) neuroendocrine tumors (NET) and of other genetic alterations that may be associated with tumorigenesis.Methods: A phase II mutation targeted therapy trial was conducted in patients with advanced well-differentiated G1/G2 GEP-NET. Mutations found in the mTOR pathway-associated genes led to treatment with the mTOR inhibitor everolimus, and were defined as actionable. Tumor deoxyribonucleic acid (DNA) from GEP-NET were sequenced and compared with germline DNA, using the OncoVAR-NET assay, designed for hybrid capture sequencing of 500 tumor suppressor genes and oncogenes. Somatic variants were called and copy-number (CN) variant analysis was performed.Results: Thirty patients (14 small-intestine, 8 pancreatic, 3 unknown primary NET, and 5 of other primary sites) harbored 37 lesions (4 patients had DNA of multiple lesions sequenced). Only 2 patients with sporadic NET (n = 26) had an actionable mutation leading to treatment with everolimus. Driver somatic mutations were detected in 18 of 30 patients (21/37 lesions sequenced). In the remaining samples without a driver mutation, CN alterations were found in 11/16 tumors (10/12 patients), including CN loss of chromosome (Chr) 18 (P<.05), CN gain of Chr 5, and loss of Chr 13. CN losses in Chr 18 were more common in patients without driver mutations detected. Pronounced genetic heterogeneity was detected in patients with multiple lesions sequenced.Conclusion: Genome-wide DNA sequencing may identify candidate actionable genes and lead to the identification of novel target genes for advanced well-differentiated GEP-NET.Abbreviations: Chr = chromosome; CN = copy number; DNA = deoxyribonucleic acid; FDA = Food and Drug Administration; GEP = gastro-enteropancreatic; MEN-1 = multiple endocrine neoplasia syndrome type 1; mTOR = mammalian target of rapamycin; NET = neuroendocrine tumor; PFS = progression-free survival; PNET = pancreatic neuroendocrine tumors; SINET = small-intestine neuroendocrine tumor  相似文献   

12.

Background

Chromatin regulatory factors are emerging as important genes in cancer development and are regarded as interesting candidates for novel targets for cancer treatment. However, we lack a comprehensive understanding of the role of this group of genes in different cancer types.

Results

We have analyzed 4,623 tumor samples from thirteen anatomical sites to determine which chromatin regulatory factors are candidate drivers in these different sites. We identify 34 chromatin regulatory factors that are likely drivers in tumors from at least one site, all with relatively low mutational frequency. We also analyze the relative importance of mutations in this group of genes for the development of tumorigenesis in each site, and in different tumor types from the same site.

Conclusions

We find that, although tumors from all thirteen sites show mutations in likely driver chromatin regulatory factors, these are more prevalent in tumors arising from certain tissues. With the exception of hematopoietic, liver and kidney tumors, as a median, the mutated factors are less than one fifth of all mutated drivers across all sites analyzed. We also show that mutations in two of these genes, MLL and EP300, correlate with broad expression changes across cancer cell lines, thus presenting at least one mechanism through which these mutations could contribute to tumorigenesis in cells of the corresponding tissues.  相似文献   

13.
《Translational oncology》2020,13(8):100787
We attempted to detect circulating tumor DNA (ctDNA), taking advantage of molecular barcode next-generation sequencing (MB-NGS), which can be more easily customized to detect a variety of mutations with a high sensitivity than PCR-based methods. Sequencing with a gene panel consisting of the 13 most frequently mutated genes in breast tumors from stage I or II patients revealed 95 somatic mutations in the 12 genes in 62% (62/100) of tumors. Then, plasma DNA from each patient (n = 62) before surgery was analyzed via MB-NGS customized to each somatic mutation, resulting in the detection of ctDNA in 16.1% (10/62) of patients. ctDNA was significantly associated with biologically aggressive phenotypes, including large tumor size (P = .004), positive lymph node (P = .009), high histological grade (P < .001), negative ER (P = .018), negative PR (P = .017), and positive HER2 (P = .046). Furthermore, distant disease-free survival was significantly worse in patients with ctDNA (n = 10) than those without ctDNA (n = 52) (P < .001). Our results demonstrate that MB-NGS personalized to each mutation can detect ctDNA with a high sensitivity in early breast cancer patients at diagnosis, and it seems to have a potential to serve as a clinically useful tumor marker for predicting their prognosis.  相似文献   

14.
C-reactive protein (CRP) is an established marker of inflammation with pattern-recognition receptor-like activities. Despite the close association of the serum level of CRP with the risk and prognosis of several types of cancer, it remains elusive whether CRP contributes directly to tumorigenesis or just represents a bystander marker. We have recently identified recurrent mutations at the SNP position -286 (rs3091244) in the promoter of CRP gene in several tumor types, instead suggesting that locally produced CRP is a potential driver of tumorigenesis. However, it is unknown whether the -286 site is the sole SNP position of CRP gene targeted for mutation and whether there is any association between CRP SNP mutations and other frequently mutated genes in tumors. Herein, we have examined the genotypes of three common CRP non-coding SNPs (rs7553007, rs1205, rs3093077) in tumor/normal sample pairs of 5 cancer types (n = 141). No recurrent somatic mutations are found at these SNP positions, indicating that the -286 SNP mutations are preferentially selected during the development of cancer. Further analysis reveals that the -286 SNP mutations of CRP tend to co-occur with mutated APC particularly in rectal cancer (p = 0.04; n = 67). By contrast, mutations of CRP and p53 or K-ras appear to be unrelated. There results thus underscore the functional importance of the -286 mutation of CRP in tumorigenesis and imply an interaction between CRP and Wnt signaling pathway.  相似文献   

15.
Genomic structural variations (SVs) are pervasive in many types of cancers. Characterizing their underlying mechanisms and potential molecular consequences is crucial for understanding the basic biology of tumorigenesis. Here, we engineered a local assembly-based algorithm (laSV) that detects SVs with high accuracy from paired-end high-throughput genomic sequencing data and pinpoints their breakpoints at single base-pair resolution. By applying laSV to 97 tumor-normal paired genomic sequencing datasets across six cancer types produced by The Cancer Genome Atlas Research Network, we discovered that non-allelic homologous recombination is the primary mechanism for generating somatic SVs in acute myeloid leukemia. This finding contrasts with results for the other five types of solid tumors, in which non-homologous end joining and microhomology end joining are the predominant mechanisms. We also found that the genes recursively mutated by single nucleotide alterations differed from the genes recursively mutated by SVs, suggesting that these two types of genetic alterations play different roles during cancer progression. We further characterized how the gene structures of the oncogene JAK1 and the tumor suppressors KDM6A and RB1 are affected by somatic SVs and discussed the potential functional implications of intergenic SVs.  相似文献   

16.

Background

Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.

Results

We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.

Conclusions

We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.  相似文献   

17.
Formalin-fixed paraffin-embedded (FFPE) tissues are utilized as the standard diagnostic method in pathology laboratories. However, admixture of unwanted tissues and shortage of normal samples, which can be used to detect somatic mutation, are considered critical factors to accurately diagnose cancer. To explore these challenges, we sorted the pure tumor cells from 22 FFPE lung adenocarcinoma tissues via Di-Electro-Phoretic Array (DEPArray) technology, a new cell sorting technology, and analyzed the variants with next-generation sequencing (NGS) for the most accurate analysis. The allele frequencies of the all gene mutations were improved by 1.2 times in cells sorted via DEPArray (tumor suppressor genes, 1.3–10.1 times; oncogenes, 1.3–2.6 times). We identified 16 novel mutations using the sequencing from sorted cells via DEPArray technology, compared to detecting 4 novel mutation by the sequencing from unsorted cells. Using this analysis, we also revealed that five genes (TP53, EGFR, PTEN, RB1, KRAS, and CTNNB1) were somatically mutated in multiple homogeneous lung adenocarcinomas. Together, we sorted pure tumor cells from 22 FFPE lung adenocarcinomas by DEPArray technology and identified 16 novel somatic mutations. We also established the precise genomic landscape for more accurate diagnosis in 22 lung adenocarcinomas with mutations detected in pure tumor cells. The results obtained in this study could offer new avenues for the treatment and the diagnosis of squamous cell lung cancers.  相似文献   

18.
《Cell research》2015,25(3):306-317
Cushing''s disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushing''s syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushing''s disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushing''s disease and provides insights into the therapeutics of this disease.  相似文献   

19.
Cancers are caused by genomic alterations that may be inherited, induced by environmental carcinogens, or caused due to random replication errors. Postinduction of carcinogenicity, mutations further propagate and drastically alter the cancer genomes. Although a subset of driver mutations has been identified and characterized to date, most cancer-related somatic mutations are indistinguishable from germline variants or other noncancerous somatic mutations. Thus, such overlap impedes appreciation of many deleterious but previously uncharacterized somatic mutations. The major bottleneck arises due to patient-to-patient variability in mutational profiles, making it difficult to associate specific mutations with a given disease outcome. Here, we describe a newly developed technique Continuous Representation of Codon Switches (CRCS), a deep learning-based method that allows us to generate numerical vector representations of mutations, thereby enabling numerous machine learning-based tasks. We demonstrate three major applications of CRCS; first, we show how CRCS can help detect cancer-related somatic mutations in the absence of matched normal samples, which has applications in cell-free DNA–based assessment of tumor mutation burden. Second, the proposed approach also enables identification and exploration of driver genes; our analyses implicate DMD, RSK4, OFD1, WDR44, and AFF2 as potential cancer drivers. Finally, we used CRCS to score individual mutations in a tumor sample, which was found to be predictive of patient survival in bladder urothelial carcinoma, hepatocellular carcinoma, and lung adenocarcinoma. Taken together, we propose CRCS as a valuable computational tool for analysis of the functional significance of individual cancer mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号