首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processivity factor of the human cytomegalovirus (HCMV) DNA polymerase phosphoprotein ppUL44 plays an essential role in viral replication, showing nuclear localization in infected cells. The present study examines ppUL44's nuclear import pathway for the first time, ectopic expression of ppUL44 revealing a strong nuclear localization in transfected COS-7 and other cell types, implying that no other HCMV proteins are required for nuclear transportation and retention. We show that of the two potential nuclear localization signals (NLSs) located at amino acids 162-168 (NLS1) and 425-431 (NLS2), NLS2 is necessary and sufficient to confer nuclear localization. Moreover, using enzyme-linked immunosorbent assays and gel mobility shift assays, we show that NLS2 is recognized with high affinity by the importin (IMP) alpha/beta heterodimer. Using gel mobility shift and transient transfection assays, we find that flanking sequences containing a cluster of potential phosphorylation sites, including a consensus site for protein kinase CK2 (CK2) at Ser413 upstream of the NLS, increase NLS2-dependent IMP binding and nuclear localization, suggesting a role for these sites in enhancing UL44 nuclear transport. Results from site-directed mutagenic analysis and live-cell imaging of green fluorescent protein (GFP)-UL44 fusion protein-expressing cells treated with the CK2-specific inhibitor 4,5,6,7-tetrabromobenzotriazole are consistent with phosphorylation of Ser413 enhancing ppUL44 nuclear transport.  相似文献   

2.
The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.  相似文献   

3.
Nuclear localization of the rat glucocorticosteroid receptor (rGR) transiently expressed in COS-7 cells appears to be mediated by two nuclear localization signals, NL1 and NL2, in a hormone-dependent mechanism. We investigated the intracellular distribution of the human GR (hGR) expressed in COS-7 cells, by a different immunohistochemical technique involving immunostaining of cell pellet sections, thus avoiding the use of cell permeabilizing agents and allowing rigorous comparison between successive experiments. With a large set of hGR mutants, we could define determinants of the hGR nuclear localization and compare them with those previously reported for rGR. Our study demonstrated two hormone-dependent nuclear localization signals. NL1 activity, overlapping the DNA-binding domain (DBD)-hinge boundary, was repressed by the unliganded ligand-binding domain (LBD), even if the repressed NL1 retained a residual potency to target hGR in the nucleus. Structure/function analysis suggested a bipartite structure of NL1, analogous to that of other nuclear targeting signals (the carboxy-terminal part of DBD between amino acids 478 and 487 and the beginning of the hinge region which includes a basic amino acid stretch between 491 and 498). Upon hormone binding, NL2, located in the LBD, was activated, but was unable by itself to sustain full nuclear localization, which required the derepressed NL1 activity. Only two sequences in the LBD, localized between amino acids 600 and 626 and from amino acid 696 up to the carboxyl-terminal amino acid 777, respectively, were found to inhibit NL1 activity. As previously reported, efficient nuclear retention, mandatory for gene expression, did not required DNA-binding activity. The controversial intracellular localization of the unliganded form of hGR and the role of hsp90 in cytoplasmic localization are further discussed.  相似文献   

4.
Glucose-regulated GRP58 has shown clinical applications to endoplasmic reticulum (ER) stress and cancer. GRP58 is localized in the cytosol, endoplasmic reticulum (ER) and nucleus. Twenty-four amino acids at the N-terminal hydrophobic region are known to target GRP58 to ER for synthesis at the ER membrane and translocation into the ER lumen. In addition, GRP58 contains putative nuclear localization (494KPKKKKK500) and ER retention (502QEDL505) signals. However, the role of these signals in nuclear import and ER retention of GRP58 remains unknown. Present studies investigated the signals that control nuclear localization and ER retention of GRP58. Deletion/mutation of nuclear localization signal (NLS) abrogated nuclear import of GRP58. NLS attached to EGFP localized EGFP in the nucleus. However, deletion/mutation of putative ER retention signal alone did not alter ER retention of GRP58. Interestingly, a combined deletion/mutation of NLS and ER retention signals blocked the GRP58 retention in the ER. These results concluded that overlapping NLS and ER retention signal sequences regulate nuclear localization and ER retention of GRP58.  相似文献   

5.
Normal herpesvirus assembly and egress depend on the correct intracellular localization of viral glycoproteins. While several post-Golgi transport motifs have been characterized within the cytoplasmic domains of various viral glycoproteins, few specific endoplasmic reticulum (ER)-to-Golgi transport signals have been described. We report the identification of two regions within the 125-amino-acid cytoplasmic domain of Varicella-Zoster virus gB that are required for its ER-to-Golgi transport. Native gB or gB containing deletions and specific point mutations in its cytoplasmic domain was expressed in mammalian cells. ER-to-Golgi transport of gB was assessed by indirect immunofluorescence and by the acquisition of Golgi-dependent posttranslational modifications. These studies revealed that the ER-to-Golgi transport of gB requires a nine-amino-acid region (YMTLVSAAE) within its cytoplasmic domain. Mutations of individual amino acids within this region markedly impaired the transport of gB from the ER to the Golgi, indicating that this domain functions by a sequence-dependent mechanism. Deletion of the C-terminal 17 amino acids of the gB cytoplasmic domain was also shown to impair the transport of gB from the ER to the Golgi. However, internal mutations within this region did not disrupt the transport of gB, indicating that its function during gB transport is not sequence dependent. Native gB is also transported to the nuclear membrane of transfected cells. gB lacking as many as 67 amino acids from the C terminus of its cytoplasmic domain continued to be transported to the nuclear membrane at apparently normal levels, indicating that the cytoplasmic domain of gB is not required for nuclear membrane localization.  相似文献   

6.
Burks LM  Yin J  Plon SE 《Gene》2007,391(1-2):26-38
Mutations in a human RecQ helicase homologue, RECQL4, have been identified in patients with Type II Rothmund-Thomson syndrome (RTS) with osteosarcoma predisposition, RAPADILINO syndrome, and Baller-Gerold syndrome. A role in DNA replication initiation has been demonstrated and mapped to the amino terminus upstream of the helicase domain; however, no nuclear localization signal (NLS) has been identified by sequence analysis. Here, we show both endogenous and green fluorescent protein (GFP)-tagged RECQL4 are nuclear and cytoplasmic in transformed cell lines. Using GFP-tagged constructs we identified a major nuclear localization domain within amino acids (aa) 363-492 (exons 5-8) sufficient for nuclear localization of GFP and necessary for nuclear localization of RECQL4 as GFP-RECQL4 deleted for aa 363-492 is entirely cytoplasmic. Additional mapping within this domain revealed that a conserved block of 22 basic amino acids (aa 365-386; exons 5-6) is sufficient for nuclear localization of GFP, but not required for nuclear import of RECQL4. Conversely, even though the region encoded by exon 7-8 is not sufficient for nuclear import of GFP, GFP-RECQL4 deleted for exon 7 (aa 420-463), a mutation found in all reported patients with RAPADILINO syndrome, is cytoplasmic. Nuclear localization of the exon 7 deletion construct is increased in cells treated with leptomycin B suggesting that exon 7 encodes a domain required for nuclear retention of RECQL4. This retention activity is partially conveyed by a conserved VLPLY motif (aa 450-454) in exon 7 of the human sequence. In summary, unlike other RecQ proteins with carboxyl terminal NLS, RECQL4 nuclear localization and retention activities are amino terminal. This location would provide nuclear transport of putative truncated proteins encoded by RTS mutant alleles consistent with the proposed essential replication function in the amino terminus of RECQL4.  相似文献   

7.
The transmembrane and anchor region of pseudorabies virus gIII is postulated to be in the 35 hydrophobic amino acids (residues 436 to 470) found near the carboxy terminus of the 479-amino-acid envelope protein. In this study, we used a genetic approach to localize the functional gIII membrane anchor between amino acids 443 and 466. Mutant gIII proteins lacking the membrane anchor were not associated with virus particles, indicating that membrane retention is a prerequisite for virion localization. Unexpectedly, the specific hydrophobic gIII sequence defined by these deletions was not required for membrane anchor function since the entire region could be replaced with leucine residues without affecting gIII membrane retention, export, or virion localization. The hydrophobic region appears to encode more than the membrane anchor domain since both efficiency of posttranslational processing and localization to virions are affected by mutations in this region. We speculate that the composition of the hydrophobic domain influences the overall conformation of gIII, which in turn effects the efficiency of gIII export and processing. The virion localization phenotype is probably indirect and reflects the efficiency of protein processing. This conclusion provides insight into the mechanism of glycoprotein incorporation into virions.  相似文献   

8.
We have reported previously that the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) fused with green fluorescent protein (GFP) is localized in the nucleus of HSV-1 TK-GFP gene-transfected cells (Degrève et al. (1998) J. Virol. 72, 9535-9543). Deletion of the N-terminal 34 amino acids or selective mutation of the nonapeptide (25)RRTALRPRR(33), located in the N-terminal region of HSV-1 TK, resulted in the loss of the specific nuclear localization of HSV-1 TK. Utilizing information on the crystallographic structure of HSV-1 TK, we have now identified three additional putative nuclear localization signals and evaluated their potential role in the nuclear trafficking of HSV-1 TK by site-directed mutagenesis. We found that the sites containing the amino acids R236-R237 and K317-R318 are absolutely required for specific nuclear targeting of HSV-1 TK. The K317-R318 region, located at the interface between the two monomers in the dimeric HSV-1 TK structure, could act as a nuclear localization signal for monomeric HSV-1 TK. Alternatively, crystallographic data indicate that R318 might be essential for the formation of the TK dimer, and therefore it is required if HSV-1 TK is transported as a dimer.  相似文献   

9.
Ribosomal subunit assembly in the nucleolus is dependent on efficient targeting of ribosomal proteins (RPs) from the cytoplasm into the nucleus and nucleolus. Nuclear/nucleolar localization of a protein is generally mediated by one or more specific stretches of basic amino acids—nuclear/nucleolar localization signals (NLSs/NoLSs). Arabidopsis thaliana RPL23aA has eight putative NLSs/NoLSs (pNLSs/NoLSs). Here we mutated all eight NLS/NoLSs individually and in groups and showed, via transient expression in tobacco cells that nucleolar localization of RPL23aA was disrupted by mutation of various combinations of five or more pNLSs/NoLSs. Mutation of all eight pNLSs/NoLSs, a 50 % reduction in total basic charge of RPL23aA, resulted in a complete disruption of nucleolar localization, however, the protein can still localize to the nucleus. As no individual or specific combination of NoLSs was absolutely required for nucleolar localization, we suggest that nucleolar localization/retention of RPL23aA is dependent on the overall basic charge. In addition to the optimal basic charge conferred by these NoLSs, nucleolar localization/retention of RPL23aA also required a C-terminal putative 26S rRNA binding site. In contrast, in the RPs RPS8A and RPL15A, mutation of just two and three N-terminal pNLSs, respectively, disrupted both nuclear and nucleolar localization of these two RPs, indicating differential signal requirements for nuclear and nucleolar localization of the three Arabidopsis RPs RPL23aA, RPL15A and RPS8A.  相似文献   

10.
Human RNA helicase A was recently identified to be a shuttle protein which interacts with the constitutive transport element (CTE) of type D retroviruses. Here we show that a domain of 110 amino acids at the carboxyl terminus of helicase A is both necessary and sufficient for nuclear localization as well as rapid nuclear export of glutathione S-transferase fusion proteins. The import and export activities of this domain overlap but are separable by point mutations. This bidirectional nuclear transport domain (NTD) has no obvious sequence homology to previously identified nuclear import or export signals. However, the Ran-dependent nuclear import of NTD was efficiently competed by excess amounts of the nuclear localization signal (NLS) peptide from simian virus 40 large T antigen, suggesting that import is mediated by the classical NLS pathway. The nuclear export pathway accessed by NTD is insensitive to leptomycin B and thus is distinct from the leucine-rich nuclear export signal pathway mediated by CRM1.  相似文献   

11.
The proteolytic processing of the human cytomegalovirus (HCMV) assembly protein, resulting in truncation of its C terminus, is an essential step in virion maturation. The proteinase responsible for this cleavage is the amino-terminal half of the protein encoded by the UL80a open reading fame. We have obtained high expression levels of this 256-amino-acid HCMV proteinase, assemblin, in Escherichia coli. In addition to the 28-kDa proteinase, a 15-kDa protein comprising the first 143 amino acids and a 13-kDa protein comprising the last 113 amino acids of the 28-kDa HCMV proteinase were present. Both the 28-kDa proteinase and the 15-kDa protein were purified by a two-step chromatographic procedure utilizing anion exchange in urea and dithiothreitol and size exclusion in NaSCN and dithiothreitol. Activation of the purified 28-kDa proteinase required denaturation in urea as well as complete reduction of all five cysteine residues in the molecule. Removal of the urea by dialysis with retention of the reducing agent yielded an active proteinase. Addition of glycerol to 50% enhanced the activity. The HCMV proteinase cleaved the peptides RGVVNASSRLAK and SYVKASVSPE, which are mimics of the maturational (M)- and release (R)-site sequences, respectively, in the UL80a-encoded protein. The cleavage site in the peptides was at the same Ala-Ser scissile bond as observed in the UL80a protein. The Km value for the cleavage of RGVVNASSRLAK (M-site mimic) by the proteinase was similar to that for SYVKASVSPE (R-site mimic), but the turnover (kcat) of the M-site peptide mimic substrate by the proteinase was six to eight times faster. The peptide homologs of the herpes simplex virus type 1 M- and R-site sequences in the UL26-encoded protein were also cleaved by the HCMV proteinase, although at rates slower than those for the HCMV substrates. The HCMV proteinase was inhibited by Zn2+ and by alkylating agents, but only at very high inhibitor concentrations. The purified 15-kDa protein, subjected to the same activation conditions as the 28-kDa proteinase, had no enzymatic activity against the HCMV M- and R-site peptide substrates.  相似文献   

12.
Cell cycle progression is regulated by cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. In the frog, Xenopus laevis, the CDK inhibitor p27(Xic1) (Xic1) inhibits DNA synthesis by negatively regulating CDK2-cyclin E. Using the frog egg extract as a model system for the study of Xic1, studies have demonstrated that Xic1 protein levels are regulated by nuclear ubiquitination and proteolysis. To characterize the molecular mechanism that regulates Xic1 turnover, we have identified the minimal sequences of Xic1 that are necessary and sufficient for its nuclear ubiquitination and degradation. Using deletion mutagenesis, our studies indicated that the C-terminal 50 amino acids of Xic1 are critical for its proteolysis beyond a role in nuclear transport. Replacement of the Xic1 C terminus with the SV40 nuclear localization sequence resulted in the nuclear localization of Xic1 but not its ubiquitination or degradation. Our deletion studies also indicated that the CDK2-cyclin binding domain of Xic1 is important for its efficient retention in the nucleus. Further deletion analyses identified at least 3 lysine residues within the Xic1 C terminus that are targeted for specific ubiquitination. Importantly, our studies demonstrated that the Xic1 C-terminal 50 amino acids can serve as a nuclear degradation signal when fused to a stable heterologous nuclear protein. Moreover, a 30-amino-acid region within the C terminus of Xic1 can serve as a nuclear ubiquitination signal. To address the role of phosphorylation on Xic1 turnover, all the potential phosphorylation sites within the C-terminal 50 amino acids of Xic1 were mutated to alanine to prevent possible phosphorylation. This resulted in a Xic1 protein that was nevertheless degraded in a manner similar to wild-type Xic1, suggesting that phosphorylation of Xic1 is not critical for its nuclear ubiquitination or proteolysis.  相似文献   

13.
Large amounts of pp65 (UL83) of human cytomegalovirus are translocated to the cell nucleus during the first minutes after uptake of the tegument protein from infecting viral particles. Two stretches of basic amino acids which resembled nuclear localization signals (NLS) of both the simian virus 40 type and the bipartite type were found in the primary structure of pp65. Deletion of these sequences significantly impaired nuclear localization of the truncated proteins after transient expression. The results indicated that both elements contributed to the nuclear localization of the protein. When fused to the bacterial beta-galactosidase, only one of the two basic elements was sufficient to mediate nuclear translocation. This element consisted of two clusters of basic amino acids (boxes C and D), which were separated by a short spacer sequence. In contrast to other bipartite NLS of animal cells, both basic boxes C and D functioned independently in nuclear transport, thus resembling simian virus 40-type NLS. Yet, complete translocation of beta-galactosidase was only found in the bipartite configuration. When both boxes C and D were fused, thereby deleting the intervening sequences, the nuclear transport of beta-galactosidase was reduced to levels seen with constructs in which only one of the boxes was present. Appropriate spacing, therefore, was important but not absolutely required. This was in contrast with results for other bipartite NLS, in which spacer deletions led to complete cytoplasmic retention. The presented results demonstrate that efficient nuclear transport of pp65 is mediated by one dominant NLS and additional targeting sequences. The major NLS of pp65 is an unusual signal sequence composed of two weak NLS which function together as one strong bipartite nuclear targeting signal.  相似文献   

14.
The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization.  相似文献   

15.
Genome segment 9 of bluetongue virus serotype 10 encodes the minor protein VP6. The protein is abundant with basic residues particularly in two regions of the carboxy half of the molecule. A series of amino- and carboxy-terminal deletion mutants was expressed in mammalian cells by using a vaccinia virus T7 polymerase-driven transient expression system, and the intracellular fate of the products was monitored by both immunofluorescence staining and cell fractionation techniques. Data obtained indicated clearly that VP6 has nuclear transportation signals which may be correlated with positively charged domains of the molecule. In the intact molecule, though, these signals are masked and the protein is retained in the cytoplasm. The biochemical and immunofluorescence data obtained indicate that sequences in the region of residues 33 to 80 of the 328-amino acid protein are required for the retention of VP6 within the cell cytoplasm while amino acids 303 to 308 in the carboxy-terminal half of the molecule appear to possess nuclear localization capabilities.  相似文献   

16.
E Bhnlein  J Berger    J Hauber 《Journal of virology》1991,65(12):7051-7055
Expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the direct interaction of the viral trans-activator protein Rev with its cis-acting RNA sequence (Rev-response element [RRE]). A stretch of 14 amino acid residues of the 116-amino-acid Rev protein is sufficient to impose nucleolar localization onto a heterologous protein. Our results demonstrated that these same amino acid residues confer Rev-specific RRE binding to the heterologous human T-cell leukemia virus type I Rex protein. In addition, our results indicated that amino acids distinct from the nuclear localization signal are important for Rex-specific RRE RNA binding.  相似文献   

17.
Nuclear import and export of influenza virus nucleoprotein.   总被引:11,自引:4,他引:7       下载免费PDF全文
Influenza virus nucleoprotein (NP) shuttles between the nucleus and the cytoplasm. A nuclear localization signal (NLS) has been identified in NP at amino acids 327 to 345 (J. Davey et al., Cell 40:667-675, 1985). However, some NP mutants that lack this region still localize to the nucleus, suggesting an additional NLS in NP. We therefore investigated the nucleocytoplasmic transport of NP from influenza virus A/WSN/33 (H1N1). NP deletion constructs lacking the 38 N-terminal amino acids, as well as those lacking the 38 N-terminal amino acids and the previously identified NLS, localized to both the cytoplasm and the nucleus. Nuclear localization of a protein containing amino acids 1 to 38 of NP fused to LacZ proved that these 38 amino acids function as an NLS. Within this region, we identified two basic amino acids, Lys7 and Arg8, that are crucial for NP nuclear import. After being imported into the nucleus, the wild-type NP and the NP-LacZ fusion construct containing amino acids 1 to 38 of NP were both transported back to the cytoplasm, where they accumulated. These data indicate that NP has intrinsic structural features that allow nuclear import, nuclear export, and cytoplasmic accumulation in the absence of any other viral proteins. Further, the information required for nuclear import and export is located in the 38 N-terminal amino acids of NP, although other NP nuclear export signals may exist. Treatment of cells with a protein kinase C inhibitor increased the amounts of nuclear NP, whereas treatment of cells with a phosphorylation stimulator increased the amounts of cytoplasmic NP. These findings suggest a role of phosphorylation in nucleocytoplasmic transport of NP.  相似文献   

18.
Fu Y  Xiao W 《DNA Repair》2003,2(12):1435-1447
The Saccharomyces cerevisiae Mms4 and Mus81 proteins form a specific complex, which functions as an endonuclease specific for branched DNA molecules and protects cells from killing by DNA alkylation damage, but not damage induced by ionizing radiations. In an effort to further understand the structure and functions of the Mus81-Mms4 complex, we attempted to define domains required for complex formation and nuclear localization through deletion and mutagenesis analyses. Combined yeast two-hybrid and co-immunoprecipitation experiments indicate that the C-terminal 100 amino acids of both Mus81 and Mms4 are required and sufficient for heterodimer formation. However, a single amino acid substitution in Mms4 in the N-terminal region is able to abolish the interaction, which suggests that the three-dimensional structure is also important for Mms4 to interact with Mus81. By fusion to green fluorescent protein and in vivo subcellular localization studies, we demonstrate that Mms4 and Mus81 are nuclear proteins and can be localized to the nucleus independently. Deletion analyses indicate that one of two putative nuclear localization signals (residues 244-263) in Mms4 is required for localization, whereas the N-terminal half of Mus81 is necessary and sufficient for its localization to the nucleus.  相似文献   

19.
We have previously described the fact that the individual expression of influenza virus PA protein induced a generalized proteolysis (J.J. Sanz-Ezquerro, S. de la Luna, Ortin, and A. Nieto, J. Virol. 69:2420-2426, 1995). In this study, we have further characterized this effect by mapping the regions of PA protein required and have found by deletion analysis that the first 247 amino acids are sufficient to bring about this activity. PA mutants that were able to decrease the accumulation levels of coexpressed proteins also presented lower steady-state levels due to a reduction in their half-lives. Furthermore, the PA wild type produced a decrease in the stationary levels of different PA versions, indicating that is itself a target for its induced proteolytic process. All of the PA proteins that induced proteolysis presented nuclear localization, being the sequences responsible for nuclear transport located inside the first 247 amino acids of the molecule. To distinguish between the regions involved in nuclear localization and those involved in induction of proteolysis, we fused the nuclear localization signal of the simian virus 40 T antigen to the carboxy terminus of the cytosolic versions of PA. None of the cytosolic PA versions affected in the first 247-amino-acid part of PA, which were now located in the nucleus, were able to induce proteolysis, suggesting that conservation of a particular conformation in this region of the molecule is required for the effect observed. The fact that all of the PA proteins able to induce proteolysis presented nuclear localization, together with the observation that this activity is shared by influenza virus PA proteins from two different type A viruses, suggests a physiological role for this PA protein activity in viral infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号