首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Prostate cancer (PCa) stem/progenitor cells are known to have higher chemoresistance than non-stem/progenitor cells, but the underlying molecular mechanism remains unclear. We found the expression of testicular nuclear receptor 4 (TR4) is significantly higher in PCa CD133+ stem/progenitor cells compared with CD133 non-stem/progenitor cells. Knockdown of TR4 levels in the established PCa stem/progenitor cells and the CD133+ population of the C4-2 PCa cell line with lentiviral TR4 siRNA led to increased drug sensitivity to the two commonly used chemotherapeutic drugs, docetaxel and etoposide, judging from significantly reduced IC50 values and increased apoptosis in the TR4 knockdown cells. Mechanism dissection studies found that suppression of TR4 in these stem/progenitor cells led to down-regulation of Oct4 expression, which, in turn, down-regulated the IL-1 receptor antagonist (IL1Ra) expression. Neutralization experiments via adding these molecules into the TR4 knockdown PCa stem/progenitor cells reversed the chemoresistance, suggesting that the TR4-Oct4-IL1Ra axis may play a critical role in the development of chemoresistance in the PCa stem/progenitor cells. Together, these studies suggest that targeting TR4 may alter chemoresistance of PCa stem/progenitor cells, and this finding provides the possibility of targeting TR4 as a new and better approach to overcome the chemoresistance problem in PCa therapeutics.  相似文献   

2.
Androgen receptor (AR) plays a central role in prostate cancer (PCa) growth, with androgen deprivation or AR down-regulation causing cell-cycle arrest and accumulation of the p27 cyclin-dependent kinase inhibitor. The molecular basis for this AR regulation of cell-cycle progression remains unclear. Here we demonstrate that androgen can rapidly reduce p27 protein in PCa cells by increasing its proteasome-mediated degradation. This rapid androgen-stimulated p27 degradation was mediated by AKT through the phosphorylation of p27 T157. Significantly, androgen increased TORC2-mediated AKT S473 phosphorylation without affecting the PDK1-mediated AKT T308 phosphorylation or TORC1 activity. The TORC2 activation was further supported by enhanced mTOR/RICTOR association and increased phosphorylation of additional TORC2 substrates, SGK1 and PKCα. The androgen-stimulated nuclear translocation of AR was associated with markedly-increased nuclear SIN1, a critical component of TORC2. Finally, the androgen-mediated TORC2/AKT activation targets a subset of AKT substrates including p27 and FOXO1, but not PRAS40. This study reveals a pathway linking AR to a selective activation of TORC2, the subsequent activation of AKT, and phosphorylation of a discrete set of AKT substrates that regulate cellular proliferation and survival. These findings establish that TORC2 can function as a central regulator of growth in response to signals that are distinct from those regulating TORC1, and support efforts to target TORC2 for cancer therapy.  相似文献   

3.
Paclitaxel (Taxol) is an effective chemotherapeutic agent for treatment of cancer patients. Despite impressive initial clinical responses, the majority of patients eventually develop some degree of resistance to Taxol-based therapy. The mechanisms underlying cancer cells resistance to Taxol are not fully understood. MicroRNA (miRNA) has emerged to play important roles in tumorigenesis and drug resistance. However, the interaction between the development of Taxol resistance and miRNA has not been previously explored. In this study we utilized a miRNA array to compare the differentially expressed miRNAs in Taxol-resistant and their Taxol-sensitive parental cells. We verified that miR-125b, miR-221, miR-222, and miR-923 were up-regulated in Taxol-resistant cancer cells by real-time PCR. We further investigated the role and mechanisms of miR-125b in Taxol resistance. We found that miR-125b was up-regulated in Taxol-resistant cells, causing a marked inhibition of Taxol-induced cytotoxicity and apoptosis and a subsequent increase in the resistance to Taxol in cancer cells. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) is a direct target of miR-125b. Down-regulation of Bak1 suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol. Restoring Bak1 expression by either miR-125b inhibitor or re-expression of Bak1 in miR-125b-overexpressing cells recovered Taxol sensitivity, overcoming miR-125-mediated Taxol resistance. Taken together, our data strongly support a central role for miR-125b in conferring Taxol resistance through the suppression of Bak1 expression. This finding has important implications in the development of targeted therapeutics for overcoming Taxol resistance in a number of different tumor histologies.  相似文献   

4.
5.
Nanoparticles provide a potent tool for targeting and understanding disease mechanisms. In this regard, cancer cells are surprisingly resistant to the expected toxic effects of positively charged gold nanoparticles (+AuNPs). Our investigations led to the identification of MICU1, regulator of mitochondrial calcium uniporter, as a key molecule conferring cancer cells with resistance to +AuNPs. The increase in cytosolic [Ca2+]cyto in malignant cells induced by +AuNPs is counteracted by MICU1, preventing cell death. Pharmacological or siRNA-mediated inhibition of mitochondrial Ca+2 entry leads to endoplasmic reticulum stress and sensitizes cancer cells to +AuNP-induced cytotoxicity. Silencing MICU1 decreases Bcl-2 expression and increases caspase-3 activity and cytosolic cytochrome c levels, thus initiating the mitochondrial pathway for apoptosis: effects further enhanced by +AuNPs. This study highlights the potential of nanomaterials as a tool to broaden our understanding of cellular processes, establishes MICU1 as a novel regulator of the machinery in cancer cells that prevents apoptosis, and emphasizes the need to synergize nanoparticle design with understanding of mitochondrial machinery for enhancing targeted cellular toxicity.  相似文献   

6.
Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN.  相似文献   

7.
Hexavalent chromium (Cr(VI)) compounds are well-established lung carcinogens. Epidermal growth factor receptor (EGFR) is a tyrosine kinase transmembrane receptor that regulates cell survival, tumor invasion, and angiogenesis. Our results show that chronic exposure of human bronchial epithelial (BEAS-2B) cells to Cr(VI) is able to cause malignant cell transformation. These transformed cells exhibit apoptosis resistance with reduced poly ADP-ribose polymerase cleavage (C-PARP) and Bax expression and enhanced expressions of Bcl-2 and Bcl-xL. These transformed cells also exhibit reduced capacity of reactive oxygen species (ROS) generation along with elevated expression of antioxidant manganese superoxide dismutase 2 (SOD2). The expression of this antioxidant was also elevated in lung tumor tissue from a worker exposed to Cr(VI) for 19 years. EGFR was activated in Cr(VI)-transformed BEAS-2B cells, lung tissue from animals exposed to Cr(VI) particles, and human lung tumor tissue. Further study indicates that constitutive activation of EGFR in Cr(VI)-transformed cells was due to increased binding to its ligand amphiregulin (AREG). Inhibition of EGFR or AREG increased Bax expression and reduced Bcl-2 expression, resulting in reduced apoptosis resistance. Furthermore, inhibition of AREG or EGFR restored capacity of ROS generation and decreased SOD2 expression. PI3K/AKT was activated, which depended on EGFR in Cr(VI)-transformed BEAS-2B cells. Inhibition of PI3K/AKT increased ROS generation and reduced SOD2 expression, resulting in reduced apoptosis resistance with commitment increase in Bax expression and reduction of Bcl-2 expression. Xenograft mouse tumor study further demonstrates the essential role of EGFR in tumorigenesis of Cr(VI)-transformed cells. In summary, the present study suggests that ligand-dependent constitutive activation of EGFR causes reduced ROS generation and increased antioxidant expression, leading to development of apoptosis resistance, contributing to Cr(VI)-induced tumorigenesis.  相似文献   

8.
TRPM7 is a novel magnesium-nucleotide-regulated metal current (MagNuM) channel that is regulated by serum Mg2+ concentrations. Changes in Mg2+ concentration have been shown to alter cell proliferation in various cells; however, the mechanism and the ion channel(s) involved have not yet been identified. Here we demonstrate that TRPM7 is expressed in control and prostate cancer cells. Supplementation of intracellular Mg-ATP or addition of external 2-aminoethoxydiphenyl borate inhibited MagNuM currents. Furthermore, silencing of TRPM7 inhibited whereas overexpression of TRPM7 increased endogenous MagNuM currents, suggesting that these currents are dependent on TRPM7. Importantly, although an increase in the serum Ca2+/Mg2+ ratio facilitated Ca2+ influx in both control and prostate cancer cells, a significantly higher Ca2+ influx was observed in prostate cancer cells. TRPM7 expression was also increased in cancer cells, but its expression was not dependent on the Ca2+/Mg2+ ratio per se. Additionally, an increase in the extracellular Ca2+/Mg2+ ratio led to a significant increase in cell proliferation of prostate cancer cells when compared with control cells. Consistent with these results, age-matched prostate cancer patients also showed a subsequent increase in the Ca2+/Mg2+ ratio and TRPM7 expression. Altogether, we provide evidence that the TRPM7 channel has an important role in prostate cancer and have identified that the Ca2+/Mg2+ ratio could be essential for the initiation/progression of prostate cancer.  相似文献   

9.
MicroRNAs are involved in cancer pathogenesis and act as tumor suppressors or oncogenes. It has been recently reported that miR-148a expression is down-regulated in several types of cancer. The functional roles and target genes of miR-148a in prostate cancer, however, remain unknown. In this report, we showed that miR-148a expression levels were lower in PC3 and DU145 hormone-refractory prostate cancer cells in comparison to PrEC normal human prostate epithelial cells and LNCaP hormone-sensitive prostate cancer cells. Transfection with miR-148a precursor inhibited cell growth, and cell migration and invasion, and increased the sensitivity to anti-cancer drug paclitaxel in PC3 cells. Computer-aided algorithms predicted mitogen- and stress-activated protein kinase, MSK1, as a potential target of miR-148a. Indeed, miR-148a overexpression decreased expression of MSK1. Using luciferase reporter assays, we identified MSK1 as a direct target of miR-148a. Suppression of MSK1 expression by siRNA, however, showed little or no effects on malignant phenotypes of PC3 cells. In PC3PR cells, a paclitaxel-resistant cell line established from PC3 cells, miR-148a inhibited cell growth, and cell migration and invasion, and also attenuated the resistance to paclitaxel. MiR-148a reduced MSK1 expression by directly targeting its 3′-UTR in PC3PR cells. Furthermore, MSK1 knockdown reduced paclitaxel-resistance of PC3PR cells, indicating that miR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant PC3PR cells in part by regulating MSK1 expression. Our findings suggest that miR-148a plays multiple roles as a tumor suppressor and can be a promising therapeutic target for hormone-refractory prostate cancer especially for drug-resistant prostate cancer.  相似文献   

10.
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.  相似文献   

11.
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.  相似文献   

12.
13.
A2780 human ovarian carcinoma cells respond to treatment with the synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) with the production of dihydroceramide and with a concomitant reduction of cell proliferation and induction of apoptosis. The derived HPR-resistant clonal cell line, A2780/HPR, is less responsive to HPR in terms of dihydroceramide generation. In this report, we show that the production of sphingosine 1-phosphate (S1P) is significantly higher in A2780/HPR versus A2780 cells due to an increased sphingosine kinase (SK) activity and SK-1 mRNA and protein levels. Treatment of A2780 and A2780/HPR cells with a potent and highly selective pharmacological SK inhibitor effectively reduced S1P production and resulted in a marked reduction of cell proliferation. Moreover, A2780/HPR cells treated with a SK inhibitor were sensitized to the cytotoxic effect of HPR, due to an increased dihydroceramide production. On the other hand, the ectopic expression of SK-1 in A2780 cells was sufficient to induce HPR resistance in these cells. Challenge of A2780 and A2780/HPR cells with agonists and antagonists of S1P receptors had no effects on their sensitivity to the drug, suggesting that the role of SK in HPR resistance in these cells is not mediated by the S1P receptors.These data clearly demonstrate a role for SK in determining resistance to HPR in ovarian carcinoma cells, due to its effect in the regulation of intracellular ceramide/S1P ratio, which is critical in the control of cell death and proliferation.  相似文献   

14.
15.
目的:探讨AID在前列腺癌中的表达情况,AID对前列腺癌细胞C4-2的侵袭、迁移、增殖以及凋亡方面的影响。方法:应用靶向敲减AID的慢病毒对前列腺癌细胞C4-2进行干扰,运用Western-blot、免疫组化、平板克隆形成、流式、Transwell实验对前列腺癌组织和前列腺癌细胞C4-2表型的变化情况进行研究。结果:临床前列腺癌样本中AID高表达,良性前列腺增生组织中AID低表达,正常前列腺组织不表达(*P0.05);shRNA干扰以后的shAICDA-C4-2单克隆细胞株中AID的表达量显著降低,其增殖、迁移和侵袭能力阳性对照组(Monoclonal6)与阴性对照组(NC)相比分别降低49%、80%、63%,凋亡率阳性对照组(Monoclonal6)为阴性对照组(NC)的3.2倍。结论:前列腺癌组织中AID高表达,AID在促进前列腺癌细胞的增殖、迁移、侵袭,抑制前列腺自细胞的凋亡中具有极其重要的作用。AID表达极可能与前列腺癌的进展、预后明显相关。  相似文献   

16.
Insulin-like growth factor-binding protein-3 (IGFBP-3), a major regulator of endocrine actions of IGFs, is a p53-regulated potent apoptotic factor and is significantly suppressed in a variety of cancers. Recent epidemiologic studies suggest that IGFBP-3 contributes to cancer risk protection in a variety of cancers, and a polymorphic variation of IGFBP-3 influences cancer risk, although other studies vary in their conclusions. Some antiproliferative actions of IGFBP-3 have been reported to be independent of IGFs, but the precise biochemical/molecular mechanisms of IGF-independent, antiproliferative actions of IGFBP-3 are largely unknown. Here we report a new cell death receptor, IGFBP-3R, that is a single-span membrane protein and binds specifically to IGFBP-3 but not other IGFBP species. Expression analysis of IGFBP-3 and IGFBP-3R indicates that the IGFBP-3/IGFBP-3R axis is impaired in breast and prostate cancer. We also provide evidence for anti-tumor effect of IGFBP-3R in vivo using prostate and breast cancer xenografts in athymic nude mice. Further in vitro studies demonstrate that IGFBP-3R mediates IGFBP-3-induced caspase-8-dependent apoptosis in various cancer cells. Knockdown of IGFBP-3R attenuated IGFBP-3-induced caspase activities and apoptosis, whereas overexpression of IGFBP-3R enhanced IGFBP-3 biological effects. IGFBP-3R physically interacts and activates caspase-8, and knockdown of caspase-8 expression or activity inhibited IGFBP-3/IGFBP-3R-induced apoptosis. Here, we propose that IGFBP-3R represents a novel cell death receptor and is essential for the IGFBP-3-induced apoptosis and tumor suppression. Thus, the IGFBP-3/IGFBP-3R axis may provide therapeutic and prognostic value for the treatment of cancer.  相似文献   

17.
Matrix metalloproteinase 8 (MMP-8) is a tumor-suppressive protease that cleaves numerous substrates, including matrix proteins and chemokines. In particular, MMP-8 proteolytically activates IL-8 and, thereby, regulates neutrophil chemotaxis in vivo. We explored the effects of expression of either a WT or catalytically inactive (E198A) mutant version of MMP-8 in human breast cancer cell lines. Analysis of serum-free conditioned media from three breast cancer cell lines (MCF-7, SK-BR-3, and MDA-MB-231) expressing WT MMP-8 revealed elevated levels of IL-6 and IL-8. This increase was mirrored at the mRNA level and was dependent on MMP-8 catalytic activity. However, sustained expression of WT MMP-8 by breast cancer cells was non-permissive for long-term growth, as shown by reduced colony formation compared with cells expressing either control vector or E198A mutant MMP-8. In long-term culture of transfected MDA-MB-231 cells, expression of WT but not E198A mutant MMP-8 was lost, with IL-6 and IL-8 levels returning to base line. Rare clonal isolates of MDA-MB-231 cells expressing WT MMP-8 were generated, and these showed constitutively high levels of IL-6 and IL-8, although production of the interleukins was no longer dependent upon MMP-8 activity. These studies support a causal connection between MMP-8 activity and the IL-6/IL-8 network, with an acute response to MMP-8 involving induction of the proinflammatory mediators, which may in part serve to compensate for the deleterious effects of MMP-8 on breast cancer cell growth. This axis may be relevant to the recognized ability of MMP-8 to orchestrate the innate immune system in inflammation in vivo.  相似文献   

18.
19.
The androgen receptor (AR) signaling pathway plays a crucial role in the development and growth of prostate malignancies. Regulation of AR homeostasis in prostate tumorigenesis has not yet been fully characterized. In this study, we demonstrate that p21-activated kinase 6 (PAK6) inhibits prostate tumorigenesis by regulating AR homeostasis. First, we demonstrated that in normal prostate epithelium, AR co-localizes with PAK6 in the cytoplasm and translocates into the nucleus in malignant prostate. Furthermore, AR phosphorylation at Ser-578 by PAK6 promotes AR-E3 ligase murine double minute-2 (Mdm2) association, causing AR degradation upon androgen stimuli. We also showed that PAK6 phosphorylates Mdm2 on Thr-158 and Ser-186, which is critical for AR ubiquitin-mediated degradation. Moreover, we found that Thr-158 collaborates with Ser-186 for AR-Mdm2 association and AR ubiquitin-mediated degradation as it facilitates PAK6-mediated AR homeostasis. PAK6 knockdown promotes prostate tumor growth in vivo. Interestingly, we found a strong inverse correlation between PAK6 and AR expression in the cytoplasm of prostate cancer cells. These observations indicate that PAK6 may be important for the maintenance of androgen-induced AR signaling homeostasis and in prostate malignancy, as well as being a possible new therapeutic target for AR-positive and hormone-sensitive prostate cancer.  相似文献   

20.
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号