首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Tibicen chiricahua and T. duryi are cicada species that are active as adults early each summer in central New Mexico, and are often syntopic in pinyon-juniper woodlands. Both species regulate thoracic temperature (Tth) within fairly narrow limits by utilizing behavioral mechanisms and evaporative cooling. However, syntopic populations of these two species were found to regulate at different Tth despite having synchronous annual and daily activity periods; overall mean Tth of T. chiricahua was 3.1°C higher than it was for T. duryi. Interspecific differences in evaporative cooling abilities and rates of passive heat exchange could not account for this difference in Tth. Part of the difference in Tth resulted from the fact that individuals of the two species were active in thermally distinct microhabitats. Within each species, mean Tth varied among behavior categories, and differences in how the two species allocated their time between activities also contributed to the interspecific difference in Tth. Though T. duryi is restricted to pinyon-juniper habitats such as the one in this study, T. chiricahua is also found in warmer habitats. The difference in Tth in the syntopic populations probably reflects interspecific differences in thermal preferences and thermal optima that are adaptive over their respective habitat ranges. The degree of dependence of Tth on ambient temperature (Tam) varied between activities within both species, with the least dependence exhibited during singing. Singing involves intense activity of tymbal muscles, which apparently can only function effectively over a relatively narrow range of temperature.  相似文献   

2.
Hybridization with the introduced white sucker, Catostomus commerson, has been blamed in part for the decline of the Rio Grande sucker, C. plebeius, in the upper Rio Grande basin of Colorado and New Mexico but without convincing evidence. Here we report results from a genetic study of hybridization between the two species across their sympatric range in New Mexico. We used two nuclear microsatellite markers and one mitochondrial DNA marker to identify hybrids. These genetic methods detected no F1 or backcross hybrids in larvae, young-of-the-year or adults from the upper Rio Grande basin. This indicates that hybridization between the two species occurs rarely, if ever.  相似文献   

3.
Historical‐to‐recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid‐to‐late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations.  相似文献   

4.
The Middle Rio Grande (MRG) of New Mexico has been influenced by man for over 500?years. Native Americans began diverting water to irrigate agricultural crops in the floodplain in the 14th century. The Spanish followed and increased agricultural irrigation to over 125 000 acres. Frequent flooding of the MRG valley in the 19th century led to many engineering projects in the early 20th century to control flooding. A series of impoundment dams, diversion dams, and levees were constructed. The loss of floodplain habitats throughout the MRG Valley has altered the riparian community and caused the demise of many fish species. A controlled flood pulse from Cochiti Reservoir, New Mexico was initiated in April 2005 to support the recovery of the endangered Rio Grande silvery minnow, Hybognathus amarus. This study documents habitat selection by larval fishes in a restored floodplain in the Rio Grande, NM. Larval fish light traps captured 394 larvae representing four cyprinid species (Pimephales promelas, H. amarus, Cyprinella lutrensis and Cyprinus carpio). Results for CCA indicate that Hybognathus amarus prefer shallow, low velocity habitats. Results from Chao-Jaccard similarity index indicated that relative contribution was highest in P. promelas at 64% followed by H. amarus 33%. Results from (dis)similarity analysis reveal that species composition between habitat orientation and date was highest in H. amarus at 42% followed by P. promelas 40%. Cyprinella lutrensis and C. carpio represented 9.5 and 8.5%, respectively. A general linear model indicated that only depth and velocity were significantly different (p?=?0.02 and p?=?0.03 respectively).  相似文献   

5.
In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.  相似文献   

6.
Susan Verhoek 《Brittonia》1978,30(2):165-171
Two new species ofManfreda are named,M. longibracteata from Michoacán, Mexico, andM. sileri, a succulent-leaved species from the Rio Grande Valley of Texas and Mexico.Agave hauniensis is transferred toManfreda.  相似文献   

7.
A new species of the megaspiline genus Dendrocerus Ratzeburg is described and figured. Dendrocerus riograndensis sp. n., is known from a series of males from the central region of Rio Grande do Sul, Brazil, and were captured with Malaise traps from an agricultural tobacco field.  相似文献   

8.
Species in the genus Gorgoderina Looss, 1902 are parasites of the urinary bladder of amphibians and include around 50 species described globally. Molecular data on species of the genus are scarce, as is the information of their life-cycle patterns. During a survey on the genetic characterization of the frog trematodes in the tropical rain forest of Los Tuxtlas, in the Gulf of Mexico slope of Mexico, specimens of two morphotypes of Gorgoderina were sampled from the Rio Grande leopard frog, Rana berlandieri. One of them represented an undescribed species which is described herein as Gorgoderina rosamondae n. sp., whereas the other one was morphologically very similar to an apparently widely distributed North American species, G. attenuata, which has been previously reported in the same geographical area. Specimens of both morphotypes were sequenced for two nuclear and one mitochondrial genes. Phylogenetic trees corroborated the distinction of the new species, and data on the internal transcribed spacer 2 revealed genetic differences between G. attenuata sequenced from frogs in USA and specimens of Gorgoderina sp. from Los Tuxtlas, indicating the possibility that they also represent an undescribed species. COI sequences showed high genetic divergence values between the new species and Gorgoderina sp. from Los Tuxtlas (8.63–9.99%). Additionally, COI sequences of the larval forms (sporocyst, cercariae and metacercariae) sampled in the same locality from their first and second intermediate hosts (Pisidium sp. and Agriogomphus tumens, respectively) showed conspecificity, and the 3 host life-cycle of the new species was elucidated.  相似文献   

9.
10.
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.  相似文献   

11.
Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales.  相似文献   

12.
The family Cryptochiridae includes a small group of cryptic crabs that inhabit cavities in scleractinian corals. They are represented in Brazil by two species. Troglocarcinus corallicola, found from Maranhão to Bahia states and that occurs in many species of the coral families Mussidae, Faviidae, Caryophillidae and Siderastreidae. Opecarcinus hypostegus, reported from the state of Pernambuco, is mainly associated with Agaricia fragilis. The range of O. hypostegus is extended to Rio Grande do Norte and Alagoas states. Males are usually smaller than females, and couples may be eventually found sharing cavities. Ovigerous females and males of O. hypostegus are recorded for the first time inhabiting adjoining cavities on colonies of Siderastrea stellata, an endemic reef coral widespread along the Brazilian littoral.  相似文献   

13.
Thorough sampling is necessary to delineate lineage diversity for polytypic ‘species’ such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study focussed on the Pecos River due to its complex geological history and potential to harbour multiple lineages. We used geometric–morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re‐assessment of the entire C. lutrensis clade. We detected five co‐occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of ‘C. lutrensis’. Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within ‘C. lutrensis’. Pleistocene re‐expansion and subsequent re‐fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene.  相似文献   

14.
Historical flood records for the Rio Grande Valley of New Mexico suggest that a pocket gopher (Thomomys bottae) hybrid zone previously thought to be 10,000 years old may actually be closer to 50 years old. Measured zone width (defined genetically) is consistent with the hypothesis of recent contact, if we assume a reasonable dispersal distance of approximately 400 m/year for pocket gophers. A five-year study of movement of the contact zone between the two species of chewing lice that parasitize these pocket gophers also is consistent with the hypothesis of recent origin of the zone.  相似文献   

15.
  1. Many once-perennial rivers have become intermittent. Channel drying can result in fish mortality if refuges are not available. Understanding where refuges occur and if fishes use these refuges can provide insight for species persistence and help stakeholders manage limited resources. Streamflow diversions in the Rio Grande of New Mexico can result in >60 km losses of aquatic habitat, affecting up to 30% of the range of imperiled Rio Grande silvery minnow (Hybognathus amarus). Potential refuges include areas with perennial flow below diversion dams, isolated pools, and irrigation return flows.
  2. We examined spatial and temporal patterns of both adult and young-of-year Rio Grande silvery minnow collected in isolated pools that formed during streamflow intermittency from 2009 to 2019. We hypothesised that: (1) Rio Grande silvery minnow would be more numerous in pools that persisted longer; (2) they would be more numerous in isolated pools located closer to upstream areas of perennial flow, due to upstream movement to escape drying; and (3) increased rate of aquatic habitat loss each day would result in more Rio Grande silvery minnow in isolated pools.
  3. During the 12 years of the study, we counted Rio Grande silvery minnow in 3,985 isolated pools that formed during streamflow intermittency. We related counts of Rio Grande silvery minnow in each pool to the maximum pool depth, rate of loss of aquatic habitat that occurred that day, and distance each pool was to an upstream barrier. In 2016, we examined persistence of 290 isolated pools until complete desiccation or reconnection with continuous flows occurred, and the factors that influenced pool persistence.
  4. Deeper pools persisted for longer, but depth had a small positive effect on counts of adult Rio Grande silvery minnow and no effect on counts of young-of-year in isolated pools. Adults were more numerous in upstream isolated pools, whereas young-of-year were more numerous in downstream isolated pools. Rate of channel drying had little effect on the numbers of adult Rio Grande silvery minnow in isolated pools, but more young-of-year were stranded when the rate of drying was faster. On average, pools persisted <4 days and 263 of 290 dried completely before continuous flows returned. Only 66 of 4,749 Rio Grande silvery minnow occurred in pools that did not dry completely.
  5. Rio Grande silvery minnow did not appear to escape channel intermittency; instead, they became stranded in shrinking isolated pools that did not persist long enough to act as refuges for fishes. Lack of refuge during channel intermittency would result in catastrophic mortality of fishes through complete desiccation of pools if there were no management actions, such as translocating fish. To increase persistence through streamflow intermittency, conservation actions should match the species response to intermittency by ensuring the availability of perennial-water refuges at the appropriate spatial and temporal scale.
  相似文献   

16.
Assiminea pecos is an endangered species of amphibious gastropod that occupies four widely separated portions of the Rio Grande region in the southwestern United States (Pecos River basin) and northeastern Mexico (Cuatro Cienegas basin). Our statistical and discriminant function analyses of shell variation among the disjunct populations of this species indicate that Mexican specimens differ in their morphometry from those of the United States and can be diagnosed by several characters. We also analyzed variation in the mitochondrial genome by sequencing 658 bp of mitochondrial COI from populations of A. pecos, representatives of the other three North American species of Assiminea, and several outgroups. Our results indicated substantial divergence of the Mexican population of A. pecos, which was consistently depicted as a monophyletic unit nested within or sister to the shallowly structured group comprised of American members of this species. Consistent with our findings, we describe the Mexican population as a new species, which is provisionally placed in the large, worldwide genus Assiminea pending further study of the phylogentic relationships of the North American assimineids. Our molecular data suggest that the Rio Grande region assimineids, which are among the few inland members of the otherwise estuarine subfamily Assimineinae, diverged from coastal progenitors in the late Miocene, with subsequent Pleistocene vicariance of Mexican and American species perhaps associated with development of the modern, lower course of the Rio Grande. Handling editor: K. Martens  相似文献   

17.
Determining patterns in annual movements of animals is an important component of population ecology, particularly for migratory birds where migration timing and routes, and wintering habitats have key bearing on population dynamics. From 2009 to 2011, we used light‐level geolocators to document the migratory movements of Flammulated Owls (Psiloscops flammeolus). Four males departed from breeding areas in Colorado for fall migration between ≤5 and 21 October, arrived in wintering areas in Mexico between 11 October and 3 November, departed from wintering areas from ≤6 to 21 April, and returned to Colorado between 15 and 21 May. Core wintering areas for three males were located in the Trans‐Mexican Volcanic Belt Mountains in the states of Jalisco, Michoacán, and Puebla in central and east‐central Mexico, and the core area for the other male was in the Sierra Madre Oriental Mountains in Tamaulipas. The mean distance from breeding to wintering centroids was 2057 ± 128 km (SE). During fall migration, two males took a southeastern path to eastern Mexico, and two males took a path due south to central Mexico. In contrast, during spring migration, all four males traveled north from Mexico along the Sierra Madre Oriental Mountains to the Rio Grande Valley and north through New Mexico. The first stopovers in fall and last stopovers in spring were the longest in duration for all males and located 300–400 km from breeding areas. Final spring stopovers may have allowed male Flammulated Owls to fine tune the timing of their return to high‐elevation breeding areas where late snows are not uncommon. One male tracked in both years had similar migration routes, timing, and wintering areas each year. Core wintering and final stopover areas were located primarily in coniferous forests and woodlands, particularly pine‐oak forests, suggesting that these are important habitats for Flammulated Owls throughout their annual cycle.  相似文献   

18.
The third species of the Neotropical genus Leinendera Carrera, 1945, Leinendera achaeta sp. n., is described from Rio Grande do Sul state, Brazil. The habitus, wing and male terminalia are described and illustrated, and a key to the three Brazilian species is provided.  相似文献   

19.
Helicopsyche trispina sp. n. is described from Grande Terre, New Caledonia, based on pharate males, larvae and pupae. The species appears to belong to the monophyletic New Caledonian Helicopsyche clade.  相似文献   

20.
Rio Grande water is intensively managed and regulated by international and interstate compacts, Native American treaties, local water rights, and federal, state, and local agencies. Legislation and engineering projects in the early twentieth century brought about water impoundment projects and channelization of the Rio Grande which led to the eventual loss of floodplain habitats. In particular, current water management practices in the Middle Rio Grande (MRG) have altered the natural flood regime altering the riparian community and floodplain dynamics which may be causing the demise of many fish species by altering food web processes. The Rio Grande silvery minnow (Hybognathus amarus), a federally endangered species, has been classified as an herbivore, detritivore, or carnivore. During low flow conditions H. amarus is primarily an algivore; however, during flood conditions, hydrodynamic scouring reduces or eliminates benthic algal food sources. The objective of this study was to identify and characterize food resources and trophic interactions for H. amarus on a restored floodplain during an extended flood-pulse release from reservoirs using stable isotope analyses (δ13C and δ15N) and paleolimnology techniques. Results from stable isotope ratios indicate that H. amarus obtained carbon primarily from chironomids while aquatic invertebrates (including chironomids) obtained their carbon from macrophytes. Results from the GLIMMIX procedure indicate that the range of isotopic signatures for prey items was much broader at parallel habitats (i.e. floodplain flow parallel to main stem flow) than perpendicular (i.e. floodplain flow perpendicular to main stem flow) or leeward habitats (i.e. leeward sides of island where flow was near zero) indicating a wider selection of food resources. This study suggests that increased duration of floodplain inundation in the MRG provides vital habitats for spawning, nursery, and recruitment of threatened and endangered fish species. A combination of allochthonous and autochthonous resources best describes the nutrient and energy transfers for the Los Lunas, NM restored floodplain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号