首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

To investigate the prevalence of occult HBV infection (OBI) among children and to characterize virology of occult HBV, we conducted an epidemiological survey.

Methods

186 HB-vaccinated infants born to HBsAg-positive mothers were included in the study. Serological tests for HBV markers were performed using commercial ELISA kits. Real-time quantitative PCR and nested PCR were used to detect HBV DNA. PCR products of the C and pre-S/S regions were sequenced and analyzed.

Results

1.61% (3/186) infants were HBsAg positive, and 4.92% (9/183) infants were considered as occult infection. The viral load of mothers was associated with occult infection (P = 0.020). Incomplete three-dose injections of HB vaccine was associated with HBV infection (P = 0.022). Six OBI infants were positive for anti-HBs, but their titers were not greater than 100 mIU/mL. Seven isolated HBV pre-S/S sequences were obtained from nine OBI infants. Three of the sequences were genotype C, and four of the sequences were genotype C/D. Escape mutation S143L was found in the four sequences of genotype C/D. All seven sequences lacked G145R and other escape mutation in S region.

Conclusions

Occult HBV infection was detected in anti-HBs positive infants born to HBsAg-positive mothers in China. Occult infection was associated with absent anti-HBs or with low anti-HBs level, high maternal viral loads and escape mutations in the S gene.  相似文献   

2.

Background/Aim

To investigate the roles of mutations in pre-S and S regions of hepatitis B virus (HBV) on the progression of hepatocellular carcinoma (HCC) in Qidong, China.

Methods

We conducted an age matched case-control study within a cohort of 2387 male HBV carriers who were recruited from August, 1996. The HBV DNA sequence in pre-S/S regions was successfully determined in 96 HCC cases and 97 control subjects. In addition, a consecutive series of samples from 11 HCC cases were employed to evaluate the pre-S deletion patterns before and after the occurrence of HCC.

Results

After adjustment for age, history of cigarette smoking and alcohol consumption, HBeAg positivity, pre-S deletions, pre-S2 start codon mutations, and T53C mutation were significantly associated with HCC, showing adjusted odds ratios (ORs) from 1.914 to 3.199. HCC patients also had a lower frequency of T31C mutation in pre-S2 gene, compared with control subjects (0.524; 95% CI 0.280-0.982). HBV pre-S deletions were clustered mainly in the 5′ end of pre-S2 region. Multivariate analysis showed that pre-S deletions and pre-S2 start codon mutations were independent risk factors for HCC. The OR (95% CI) were 2.434 (1.063–5.573) and 3.065 (1.099–8.547), respectively. The longitudinal observation indicated that the pre-S deletion mutations were not acquired at the beginning of HBV infection, but that the mutations occurred during the long course of liver disease.

Conclusion

Pre-S deletions and pre-S2 start codon mutations were independently associated with the development of HCC. The results also provided direct evidence that pre-S deletion mutations were not acquired from the beginning of infection but arose de novo during the progression of liver disease.  相似文献   

3.
4.
To describe the Hepatitis B e antigen(HBeAg) seroconversion related mutation profiles of the basal core promoter(BCP)/precore regions in e antigen seroconverted child patients, a cohort of 245 child patients with CHB and a control patients group of 92 adult patients with CHB were recruited. The mutation frequencies of six nucleotides or nucleotide combinations including nucleotide (nt)1896, nt1762/1764, nt1752, nt1846, nt1899 and nt1753 showed significant differences between HBeAg positive and HBeAg-negative child patients groups. The frequencies of these HBeAg seroconversion-related mutations were significantly lower in HBeAg-negative children with CHB than in HBeAg-negative adults with CHB, especially for the mutation G1896A (41.1% vs 91.7%, P<0.001), and the average number of BCP/precore region mutations in samples from HBeAg-negative child patients was also obviously lower than in HBeAg-negative adult patients(3.62±3.03 vs 4.89±2.09, P<0.001), suggesting less impact of mutations in the BCP/precore region on HBeAg seroconversion in child patients than adult patients.  相似文献   

5.
The hepatitis B virus (HBV) envelope proteins bear two determinants of viral entry: a receptor-binding site (RBS) in the pre-S1 domain of the large envelope protein and a conformation-dependent determinant, of unknown function, in the antigenic loop (AGL) of the small, middle, and large envelope proteins. Using an in vitro infection assay consisting of susceptible HepaRG cells and the hepatitis delta virus (HDV) as a surrogate of HBV, we first investigated whether subelements of the pre-S1 determinant (amino acids 2 to 75), i.e., the N-terminal myristoyl anchor, subdomain 2-48 (RBS), and subdomain 49-75, were functionally separable. In transcomplementation experiments, coexpression of two distinct infectivity-deficient pre-S1 mutants at the surface of HDV virions failed to restore infectivity, indicating that the myristoyl anchor, the 2-48 RBS, and the 49-75 sequence, likely cooperate in cis at viral entry. Furthermore, we showed that as much as 52% of total pre-S1 in the HDV envelope could bear infectivity-deficient lesions without affecting entry, indicating that a small number of pre-S1 polypeptides—estimated at three to four per virion—is sufficient for infectivity. We next investigated the AGL activity in the small or large envelope protein background (S- and L-AGL, respectively) and found that lesions in S-AGL were more deleterious to infectivity than in L-AGL, a difference that reflects the relative stoichiometry of the small and large envelope proteins in the viral envelope. Finally, we showed that C147S, an AGL infectivity-deficient substitution, exerted a dominant-negative effect on infectivity, likely reflecting an involvement of C147 in intermolecular disulfide bonds.Hepatitis B virus (HBV) remains a major public health concern worldwide, affecting more than 350 millions of chronically infected individuals. Since the discovery of HBV, substantial information has been gathered on the viral replication cycle, but our understanding of the viral entry mechanism remains limited, and the identity of the receptor(s) for HBV is still unknown (15). HBV displays a very narrow host range, which is likely determined at viral entry by a highly specific interaction between the HBV envelope proteins and receptors at the surface of human hepatocytes. The envelope proteins designated large (L-HBsAg), middle (M-HBsAg), and small (S-HBsAg) are membrane-spanning glycoproteins that differ from each other by the size of their N-terminal ectodomain (21). L-HBsAg contains a N-terminal pre-S1, central pre-S2, and C-terminal S domains. M-HBsAg is shorter than L-HBsAg in lacking pre-S1, whereas S-HBsAg consists of the S domain only (Fig. (Fig.1).1). Envelope protein synthesis occurs at the endoplasmic reticulum (ER) membrane. Empty subviral particles (SVPs) assemble from aggregates at a pre-Golgi membrane and exit the cell through the secretory pathway (36). Assembly of mature HBV virions requires, in addition to S-HBsAg, the presence of L-HBsAg as a matrix protein for nucleocapsid envelopment (6). Recent findings indicate that HBV virions and SVPs follow distinct pathways for budding: the late endosomal multivesicular bodies (MVBs) for HBV virions, and the MVB-independent secretory pathway for SVPs (26, 28, 46). The HBV envelope proteins can also package the hepatitis delta virus (HDV) ribonucleoprotein (RNP), in case of HBV/HDV coinfection (5, 45), leading to the formation of HDV virions. Whether HDV uses the SVP secretion pathway rather than an MVB-dependent route is uncertain.Open in a separate windowFIG. 1.Schematic representation of HBV envelope proteins. The topology of the L-, M-, and S-HBsAg proteins at the viral membrane is represented. The pre-S2 domain of L- and M-HBsAg, and the determinants of viral entry, pre-S1 and AGL, are indicated. The M-HBsAg protein, represented in gray, is dispensable for infectivity. The myristic acid (Myr) linked to the L-HBsAg N terminus is indicated (closed box). Subdomains 2-48 and 49-75 of the pre-S1 infectivity determinant are indicated. Open boxes represent transmembrane regions in the S domain.L-HBsAg, but not M-HBsAg, is crucial to infectivity of both HBV and HDV particles (13, 31, 41, 42). L-HBsAg contains a major infectivity determinant located between amino acid residues 2 and 75 of its N-terminal pre-S1 domain (4, 30), including a myristoyl anchor linked to glycine-2 (1, 8, 18), a putative receptor binding site (RBS) between positions 2 and 48, and a domain of unknown function between amino acids 49 and 75. To date, the most compelling evidence that pre-S1 mediates receptor binding comes from studies demonstrating that myristoylated synthetic peptides specific for the N-terminal 2-to-48 pre-S1 domain can bind to hepatocyte plasma membranes and block infection in vitro (3, 16, 17) and in vivo (37). Beside pre-S1, a second determinant was recently identified in the antigenic loop (AGL) borne by the three HBV envelope proteins (Fig. (Fig.1).1). The AGL participation in viral entry was first established in the HDV model (23) and more recently directly in the HBV model (39). Interestingly, serine substitutions for the AGL cysteine residues, which prove detrimental to the conserved immunodominant “a” determinant, could also block viral entry. Note that the “a” determinant consists in conformational epitopes, which elicit highly neutralizing antibodies (22). Infectivity and the “a” determinant were also lost when virions were treated with membrane-impermeable inhibitors of thiol/disulfide isomerization (2). These findings clearly established a correlation between the AGL cysteine disulfide bonds network, the conformation of the “a” determinant, and infectivity. Hence, the strict conservation of the “a” determinant among all HBV genotypes is related to the AGL function at viral entry. The AGL determinant may operate in association with, or independently of pre-S1, in binding to receptors at the early step of entry and/or in the mechanism of envelope disassembly postentry.In the present study, we investigated the pre-S1 determinant by performing transcomplementation experiments between mutants of 3 pre-S1 subelements: the myristoyl anchor, subdomain 2-48, and subdomain 49-75. We analyzed the activity of the AGL determinant in the S- or L-HBsAg background (S- and L-AGL, respectively), and we examined the effect of introducing increasing amounts of infectivity-deficient pre-S1, or AGL, in the virion''s envelope on infectivity.  相似文献   

6.
Vectors expressing the first 58 amino acids of the hepatitis C virus (HCV) nucleocapsid alone or as a fusion protein with the middle (pre-S2 and S) or major (S) surface antigens of hepatitis B virus (HBV) were constructed. Intramuscular immunization of BALB/c mice with the chimeric constructs in the form of naked DNA elicited humoral responses to antigens from both viruses within 2 to 6 weeks postinjection. No anti-HCV responses were obtained in mice immunized with the vector expressing the HCV sequence in the nonfusion context. Sera from chimera-injected mice specifically recognized both HCV capsid and HBV surface antigens in enzyme-linked immunosorbent assay and immunoblot testing. Anti-HCV serum titers formed plateaus of approximately 1:3,000; these remained stable until the end of the study (18 weeks postinfection). Anti-HBV immune responses were found to be lower in the chimera-injected animals (< 200 mIU/ml) than in those immunized with the native HBV vector (> 2,000 mIU/ml). This is the first report of the use of DNA-based immunization for the generation of immune responses to an HCV protein. In addition, these findings show that it is possible to elicit responses to viral epitopes from two distinct viruses via DNA immunization with chimeric vectors.  相似文献   

7.
The prevalence of occult Hepatitis B virus (HBV) infection in children was considerably varied from 0.1–64% in different reports. In this study we aimed to investigate the prevalence of occult HBV infection among the children born to mothers with positive hepatitis B surface antigen (HBsAg) in Jiangsu, China. Serum samples were collected from 210 children of 207 mothers with positive HBsAg. HBV serological markers were detected by ELISA and HBV DNA was detected by nested PCR. Homology comparison of HBV sequences recovered from the child and mother was used to define the infection. Three children (1.43%) were positive for HBsAg, in whom the HBV pre S and S gene sequence in each child was identical to that in her mother. Of the 207 HBsAg-negative children, nine displayed HBV DNA positive by two nested PCR assays using primers derived from S and C genes. However, the sequence alignment showed that the sequences in each child were considerably different from those in his/her mother. Therefore, the sequences amplified from the children were very likely resultant from the cross-contaminations. Furthermore, the nine children with ‘positive HBV DNA’ were all negative for anti-HBc, and one had anti-HBs 3.42 mIU/ml and eight others had anti-HBs from 72 to >1000 mIU/ml, indicating that the nine children were less likely infected with HBV. Therefore, none of the 207 HBsAg-negative children of HBV-infected mothers was found to have occult HBV infection. We conclude that the prevalence of occult HBV infection in vaccinated children born to HBsAg positive mothers should be extremely low. We recommend that homology comparison of sequences recovered from the child and mother be used to define the occult HBV infection in children born to HBV infected mothers.  相似文献   

8.
Zhou B  Xiao L  Wang Z  Chang ET  Chen J  Hou J 《PloS one》2011,6(4):e18708
Two forms of hepatitis B virus (HBV) C/D recombinant have been identified in western China, but little is known about their geographical and ethnic distributions, and particularly the clinical significance and specific mutations in the pre-core region. To address these questions, a total of 624 chronic HBV carriers from four ethnic populations representing five provinces in western China were enrolled in this study. Genotypes were firstly determined by restriction fragment length polymorphism, and then confirmed by full or partial genome nucleotide sequencing. The distribution of HBV genotypes was as follows: HBV/B: 40 (6.4%); HBV/C: 221 (35.4%); HBV/D: 39 (6.3%); HBV/CD: 324 (51.9%). In the 324 HBV C/D recombinant infections, 244 (75.3%) were infected with the “CD1” and 80 (24.7%) were infected with the “CD2.” The distribution of HBV genotypes exhibited distinct patterns in different regions and ethnic populations. Geographically, the C/D recombinant was the most prevalent HBV strain on the Qinghai-Tibet Plateau. Ethnically, the C/D recombinant had a higher prevalence in Tibetan patients than in other populations. Clinically, patients with HBV/CD1 showed significantly lower levels of serum total bilirubin than patients with HBV/C2. The prevalence of HBeAg was comparable between patients with HBV/CD1 and HBV/C2 (63.3% vs 50.0%, P = 0.118) whether patients were taken together or stratified by age into three groups (65.6% vs 58.8% in <30 years, P = 0.758; 61.9% vs 48.0% in 30–50 years, P = 0.244; 64.3% vs 33.3%, P = 0.336). Virologically HBV/CD1 had a significantly lower frequency of G1896A than HBV/C2. In conclusion, the HBV C/D recombinant is restricted to the Qinghai-Tibet Plateau in western China and is found predominantly in Tibetans. The predominance of the premature pre-core stop mutation G1896A in patients with the HBV C/D recombinant may account for the higher prevalence of HBeAg in these patients.  相似文献   

9.
Hepatitis delta virus (HDV) particles are coated with the envelope proteins (large, middle, and small) of the hepatitis B virus (HBV). The large protein bears an infectivity determinant in its pre-S1 domain, whereas a second determinant has been proposed to map to the cysteine-rich antigenic loop (AGL) within the S domain of all three envelope proteins (G. Abou Jaoudé and C. Sureau, J. Virol. 79:10460-10466, 2006). In this study, the AGL cysteines were substituted by serine or alanine, and the mutants were evaluated for their function at viral entry using HDV particles and susceptible HepaRG cells. Mutations of cysteines 121 to 149 were tolerant of the production of HDV virions. The mutations altered the structure and antigenicity of the conserved “a” determinant of the AGL, as measured by conformation-sensitive antibodies, and they created a block to infectivity. Substitution of Cys-90 or Cys-221, located outside of the AGL, had no impact on the “a” determinant or viral entry. Furthermore, infectivity was maintained when the AGL CxxC motif at position 121 to 124 was modified by single-amino-acid deletion or insertion, suggesting that cysteines 121 and 124 are not catalyzers of thiol/disulfide exchange. However, membrane-impermeable inhibitors of thiol/disulfide isomerazation demonstrated a dose-dependent inhibition of infection in an in vitro assay when applied to the virus prior to inoculation or during the virus-cell interaction period. Overall, the results demonstrate the essential role of the AGL cysteines at viral entry, and they establish a correlation between the cysteine disulfide network, the conformation of the “a” determinant, and infectivity.  相似文献   

10.
11.
Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the “a” determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the “a” determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV “a” determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.  相似文献   

12.
The hepatitis B virus (HBV) particles bear a receptor-binding site located in the pre-S1 domain of the large HBV envelope protein. Using the hepatitis delta virus (HDV) as a surrogate of HBV, a second infectivity determinant was recently identified in the envelope proteins antigenic loop (AGL), and its activity was shown to depend upon cysteine residues that are essential for the structure of the HBV immunodominant “a” determinant. Here, an alanine-scanning mutagenesis approach was used to precisely map the AGL infectivity determinant to a set of conserved residues, which are predicted to cluster together with cysteines in the AGL disulfide bridges network. Several substitutions suppressed both infectivity and the “a” determinant, whereas others were infectivity deficient with only a partial impact on antigenicity. Interestingly, G145R, a substitution often arising under immune pressure selection and detrimental to the “a” determinant, had no effect on infectivity. Altogether, these findings indicate that the AGL infectivity determinant is closely related to, yet separable from, the “a” determinant. Finally, a selection of HDV entry-deficient mutations were introduced at the surface of HBV virions and shown to also abrogate infection in the HBV model. Therefore, a function can at last be assigned to the orphan “a” determinant, the first-discovered marker of HBV infection. The characterization of the AGL functions at viral entry may lead to novel approaches in the development of antivirals against HBV.Hepatitis B virus (HBV) causes acute and chronic infections in humans; such infections are often associated with severe liver diseases, including cirrhosis and hepatocellular carcinoma (10). To date, it is estimated that approximately 350 millions individuals worldwide suffer from chronic infection despite the availability of an effective vaccine for more than 25 years. Remarkably, the development of a vaccine soon after the HBV discovery was, at least in part, the consequence of a very peculiar feature that is unique to members of the Hepadnaviridae family: viral envelope proteins are produced in quantities far exceeding the amounts required for assembly of HBV virions (6) and, owing to their capacity for autoassembly, the vast majority are secreted as subviral particles. Besides the practical consequences in the original vaccine development, in nature, the phenomenon of HBV envelope protein overexpression has provided a helper function to the hepatitis delta virus (HDV) (29). The HBV envelope proteins assist in packaging the HDV ribonucleoprotein (RNP) in case of HBV-HDV coinfection, thereby ensuring spreading of the satellite HDV. As a result, the coats of HBV and HDV particles are similar, consisting of cell-derived lipids and the HBV envelope proteins—large, middle, and small—bearing the HBV surface antigen (HBsAg) and referred to as L-HBsAg, M-HBsAg, and S-HBsAg, respectively (4, 14).The HBsAg includes an immunodominant determinant common to all HBV strains, referred to as “a,” and several mutually exclusive subtype-specific determinants referred to as “d”/“y” and “w”/“r” (21). The “a” determinant is defined by a specific conformation of the antigenic loop (AGL) polypeptide present at the surface of subviral, HBV, or HDV particles. The AGL itself resides between the transmembrane domain II (residues 80 to 100) and the hydrophobic carboxyl terminus (residues 165 to 226) of the envelope proteins S domain (see Fig. Fig.1).1). It is the “a” determinant that elicits the most effective neutralizing antibody response upon vaccination or infection (32). Surprisingly, a function in the HBV life cycle had never been assigned to the “a” determinant, the first identified HBV marker, until the recent demonstration of its involvement in HDV entry (2, 15). More precisely, it was shown that the AGL cysteine residues were critical for both the structure of the “a” determinant and HDV infectivity (2).Open in a separate windowFIG. 1.Schematic representation of the HBV envelope protein AGL. (A) The topology of the L-, M-, and S-HBsAg proteins (L, M, and S, respectively) is represented. The determinants of viral entry, pre-S1 and AGL, are indicated in red. The M-HBsAg protein, represented in gray, is dispensable for infectivity. Open boxes represent transmembrane regions in the S domain. (B) Alignment of the AGL amino acids sequences (positions 101 to 172 in the S domain) of HBV (genotype D, ayw3 phenotype), WMHBV, and WHV. The GenBank sequence numbers of the isolates are as follows: J02203 (HBV), AY226578 (WMHBV), and NC_004107 (WHV). HBV amino acid residues important for infectivity (the present study) are indicated in blue. A hyphen denotes amino acid identity with the HBV sequence.It is now well established that both HBV and HDV entry rely on the pre-S1 domain of L-HBsAg as the primary infectivity determinant that is likely to promote attachment to a specific receptor at the surface of human hepatocytes (11). The AGL determinant could thus fulfill complementary functions for attachment, uptake, or particle disassembly after entry (2, 15).In the present study, the AGL infectivity determinant was mapped and confirmed to be closely related to the “a” determinant. Moreover, its essential function at viral entry was demonstrated in the HBV model.  相似文献   

13.
The growth rate of the Phycomyces sporangiophore fluctuates under constant environmental conditions. These fluctuations underlie the well-characterized sensory responses to environmental changes. We compared growth fluctuations in sporangiophores of unstimulated wild type and behavioral mutants by use of maximum entropy spectral analysis, a mathematical technique that estimates the frequency and amplitude of oscillations in a time series. The mutants studied are believed to be altered near the input (“night-blind”) or output (“stiff” and “hypertropic”) of the photosensory transduction chain. The maximum entropy spectrum of wild type shows a sharp drop-off in spectral density above 0.3 millihertz, several minor peaks between 0.3 and 10 millihertz, and a broad maximum near 10 millihertz. Similar spectra were obtained for a night-blind mutant and a hypertropic mutant. In contrast, the spectra of three stiff mutants, defective in genes madD, madE, or madG, had distinctive peaks near 1.6 mHz and harmonics of this frequency. A madF stiff mutant, which is less stiff than madD, madE, and madG mutants, had a spectrum intermediate between wild type and the three other stiff mutants. Our results indicate that alterations in one or more steps associated with growth regulation output cause the Phycomyces sporangiophore to express a rhythmic growth rate.  相似文献   

14.
The power of language to modify the reader’s perception of interpreting biomedical results cannot be underestimated. Misreporting and misinterpretation are pressing problems in randomized controlled trials (RCT) output. This may be partially related to the statistical significance paradigm used in clinical trials centered around a P value below 0.05 cutoff. Strict use of this P value may lead to strategies of clinical researchers to describe their clinical results with P values approaching but not reaching the threshold to be “almost significant.” The question is how phrases expressing nonsignificant results have been reported in RCTs over the past 30 years. To this end, we conducted a quantitative analysis of English full texts containing 567,758 RCTs recorded in PubMed between 1990 and 2020 (81.5% of all published RCTs in PubMed). We determined the exact presence of 505 predefined phrases denoting results that approach but do not cross the line of formal statistical significance (P < 0.05). We modeled temporal trends in phrase data with Bayesian linear regression. Evidence for temporal change was obtained through Bayes factor (BF) analysis. In a randomly sampled subset, the associated P values were manually extracted. We identified 61,741 phrases in 49,134 RCTs indicating almost significant results (8.65%; 95% confidence interval (CI): 8.58% to 8.73%). The overall prevalence of these phrases remained stable over time, with the most prevalent phrases being “marginally significant” (in 7,735 RCTs), “all but significant” (7,015), “a nonsignificant trend” (3,442), “failed to reach statistical significance” (2,578), and “a strong trend” (1,700). The strongest evidence for an increased temporal prevalence was found for “a numerical trend,” “a positive trend,” “an increasing trend,” and “nominally significant.” In contrast, the phrases “all but significant,” “approaches statistical significance,” “did not quite reach statistical significance,” “difference was apparent,” “failed to reach statistical significance,” and “not quite significant” decreased over time. In a random sampled subset of 29,000 phrases, the manually identified and corresponding 11,926 P values, 68,1% ranged between 0.05 and 0.15 (CI: 67. to 69.0; median 0.06). Our results show that RCT reports regularly contain specific phrases describing marginally nonsignificant results to report P values close to but above the dominant 0.05 cutoff. The fact that the prevalence of the phrases remained stable over time indicates that this practice of broadly interpreting P values close to a predefined threshold remains prevalent. To enhance responsible and transparent interpretation of RCT results, researchers, clinicians, reviewers, and editors may reduce the focus on formal statistical significance thresholds and stimulate reporting of P values with corresponding effect sizes and CIs and focus on the clinical relevance of the statistical difference found in RCTs.

The power of language to modify the reader’s perception of interpreting biomedical results cannot be underestimated. An analysis of more than half a million randomized controlled trials reveals that researchers are using appealing phrases to describe non-significant findings as if they were below the p=0.05 significance threshold.  相似文献   

15.

Background and Aims

Deletions/mutations in the hepatitis B virus (HBV) pre-S region have been associated with hepatocellular carcinoma (HCC). We aimed to study the evolutionary changes of pre-S mutations prior to HCC development.

Methods

We studied the HBV pre-S sequences at 1 to 10 years preceding diagnosis of HCC in 74 patients with HBV-related HCC (HCC group). 148 chronic hepatitis B patients matched for sex and age in 2:1 ratio, who had been followed up for at least 3 years without HCC (HCC-free group) were recruited as controls. 56 and 47 patients of HCC and HCC-free groups respectively had serially stored sera for longitudinally examination at 1–3 years, 4–6 years, 7–9 years and ≥10 years prior to the recruitment of the study.

Results

Compared to the HCC-free group, higher frequencies of pre-S deletions and point mutations (at 11 codons) were observed in the HCC group (p<0.05). Multiple logistic regression analysis showed that pre-S deletions, point mutations at codon 51 and 167 were independent factors associated with HCC. Longitudinal observation showed that pre-S deletions and most of the 11 HCC-associated pre-S point mutations existed at least 10 years before HCC development, and were more prevalent preceding HCC development in patients from HCC groups than HCC-free group. The number of HCC-associated pre-S point mutations increased over time preceding HCC development, and correlated positively with the time to HCC diagnosis (r = 0.220, p = 0.005).

Conclusions

High prevalence and cumulative evolution of pre-S mutations preceding HCC development suggested a possible carcinogenic role of pre-S mutations and their potential application in HCC risk prediction.  相似文献   

16.
17.
Among the three viral proteins present in the hepatitis B virus (HBV) envelope, both the small and large polypeptides, but not the middle polypeptide, are necessary for the production of complete viral particles. Whereas it has been established that the C-terminal extremity of the pre-S1 region is required for HBV morphogenesis, whether the pre-S2 region of the large surface protein plays a critical role remains questionable. In the present study, we have analyzed the role of the large-polypeptide pre-S2 region in viral maturation and infectivity. For this purpose, mutants bearing contiguous deletions covering the entire pre-S2 domain were generated. First, the efficient expression of all the mutant large envelope proteins was verified and their ability to substitute for the wild-type form in virion secretion was tested. We found that distinct deletions covering the domain between amino acids 114 and 163 still allowed virion production. In contrast, the polypeptide lacking the first 5 amino acids of pre-S2 (amino acids 109 to 113) was unable to support viral secretion. This result shows that the domain of the large surface protein, required for this process, must be extended to the N-terminal extremity of pre-S2. We then demonstrated that all the mutants competent for virion release were able to infect normal human hepatocytes in primary culture. Taken together, these results indicate that only 10% of the large-protein pre-S2 region at its N-terminal extremity is essential for virion export and that the remaining part, dispensable for viral secretion, is also dispensable for infectivity.  相似文献   

18.
Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states (“closed” vs. “open”) of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of “closed” syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1–depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the “open” syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between “closed” syntaxin-1A and Munc18-1, whereas the same mutation in the “open” syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane.  相似文献   

19.
We have shown, by analyzing serial serum samples from a chronic hepatitis B virus (HBV) carrier, the emergence of HBV DNA molecules with nucleotide rearrangements in the pre-S/S and pre-C/C genes. Serum samples were obtained at four different times (1983, 1985, 1988, and 1989) from an HBsAg- and HBeAg-positive carrier with chronic hepatitis. The polymerase chain reaction was used to amplify the pre-S/S and pre-C/C genes. The amplified products were cloned, and 8 to 10 independent clones were sequenced. In 1983 and 1985 only one type of HBV DNA molecule was observed. Nucleotide divergence relative to the adw2 subtype was 4.7, 7.2, and 1.6%, for the pre-S1, pre-S2, and S regions, respectively, and 2.2 and 3.9% for the pre-C and C regions, respectively. In 1988 and 1989, HBV DNA forms with marked rearrangements of both the pre-S/S and pre-C/C regions were evidenced. In the pre-S/S region, they comprised two distinct HBV DNA molecules. The first showed nucleotide divergence of 20.4, 14.8, and 3.3% for the pre-S1, pre-S2, and S regions when compared with the adw2 sequence. In addition, nucleotide deletions in the pre-S1 region led to the appearance of a stop codon. The second was created by recombination between the original and mutated HBV DNA. In the pre-C/C region, the mutated viral DNA showed 11.7% divergence when compared with the adw2 sequence. A point mutation led to the creation of a stop codon in the pre-C region, together with an insertion of 36 nucleic acids in the core gene. Most of this DNA insertion was identical to that reported in an independent HBV isolate but showed no significant homology with known sequences. Semiquantitative estimation of the proportion of wild-type and mutated HBV DNA molecules showed a marked increase in the mutated forms during the period of follow-up. Sucrose gradient analysis indicated that the defective HBV DNA molecules were present in circulating virions. Western immunoblot analysis showed the appearance of modified translation products. Our findings thus indicate the emergence of and gradual takeover by mutated HBV DNA forms during the HBV chronic carrier state. The rearrangements we observed in the pre-S/S and pre-C/C genes might lead to changes in the immunogenicity of the viral particles and thus affect the clearance of the virus by the immune system.  相似文献   

20.
Hepatitis B virus (HBV) DNA was extracted from sera of six carriers with hepatitis B e antigen as well as antibody to hepatitis B surface antigen and sequenced within the pre-S regions and the S gene. HBV DNA clones from five of these carriers had point mutations in the S gene, resulting in conversion from Ile-126 or Thr-126 of the wild-type virus to Ser-126 or Asn-126 in three carriers and conversion from Gly-145 to Arg-145 in three of them; clones with Asn-126 or Arg-145 were found in one carrier. All 12 clones from the other carrier had an insertion of 24 bp encoding an additional eight amino acids between Thr-123 and Cys-124. In addition, all or at least some of the HBV DNA clones from these carriers had in-phase deletions in the 5' terminus of the pre-S2 region. These results indicate that HBV escape mutants with mutations in the S gene affecting the expression of group-specific determinants would survive in some carriers after they seroconvert to antibody against surface antigen. Carriers with HBV escape mutants may transmit HBV either by donation of blood units without detectable surface antigen or through community-acquired infection, which would hardly be prevented by current hepatitis B immuneglobulin or vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号