首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted an unbiased metagenomics survey using plasma from patients with chronic hepatitis B, chronic hepatitis C, autoimmune hepatitis (AIH), non-alcoholic steatohepatitis (NASH), and patients without liver disease (control). RNA and DNA libraries were sequenced from plasma filtrates enriched in viral particles to catalog virus populations. Hepatitis viruses were readily detected at high coverage in patients with chronic viral hepatitis B and C, but only a limited number of sequences resembling other viruses were found. The exception was a library from a patient diagnosed with hepatitis C virus (HCV) infection that contained multiple sequences matching GB virus C (GBV-C). Abundant GBV-C reads were also found in plasma from patients with AIH, whereas Torque teno virus (TTV) was found at high frequency in samples from patients with AIH and NASH. After taxonomic classification of sequences by BLASTn, a substantial fraction in each library, ranging from 35% to 76%, remained unclassified. These unknown sequences were assembled into scaffolds along with virus, phage and endogenous retrovirus sequences and then analyzed by BLASTx against the non-redundant protein database. Nearly the full genome of a heretofore-unknown circovirus was assembled and many scaffolds that encoded proteins with similarity to plant, insect and mammalian viruses. The presence of this novel circovirus was confirmed by PCR. BLASTx also identified many polypeptides resembling nucleo-cytoplasmic large DNA viruses (NCLDV) proteins. We re-evaluated these alignments with a profile hidden Markov method, HHblits, and observed inconsistencies in the target proteins reported by the different algorithms. This suggests that sequence alignments are insufficient to identify NCLDV proteins, especially when these alignments are only to small portions of the target protein. Nevertheless, we have now established a reliable protocol for the identification of viruses in plasma that can also be adapted to other patient samples such as urine, bile, saliva and other body fluids.  相似文献   

2.
Summary A phylogenetic tree for the human lymphadenopathy-associated virus (LAV), the human T-cell lymphotrophic virus type III (HTLV-III), and the acquired immune deficiency syndrome (AIDS)-associated retrovirus (ARV) has been constructed from comparisons of the amino acid sequences of their gag proteins. A method is proposed for estimating the divergence times among these AIDS viruses and the rates of nucleotide substitution for their RNA genomes. The analysis indicates that the LAV and HTLV-III strains diverged from one another after 1977 and that their common ancestor diverged from the ARV virus no more than 10 years earlier. Hence, the evolutionary diversity among strains of the AIDS viruses apparently has been generated within the last 20 years. It is estimated that the genome of the AIDS virus has a nucleotide substitution rate on the order of 10–3 per site per year, with the rate in the second half of the genome being double that in the first half.  相似文献   

3.
Acquired immune deficiency syndrome (AIDS) can be transferred to patients by blood transfusions or human blood preparations, such as cryoprecipitates or factor VIII concentrates. Retroviruses have been discussed as infectious AIDS agents and more recently human T-lymphotropic retroviruses designated as HTLV type III and LAV (lymphadenopathy-associated virus) have been isolated from AIDS patients. Whether heat treatment at 60 degrees C (pasteurization) of liquid human plasma protein preparations inactivates retroviruses was therefore investigated. Pasteurization had already been included in the routine manufacturing process of human plasma protein preparations in order to guarantee safety with regard to hepatitis B. Since high titer preparations of human retroviruses were not available, heat inactivation was studied using Rous sarcoma virus added to the various plasma protein preparations tested. This retrovirus which was obtained in preparations of 6.0 log10 FFU/ml was shown to be at least as heat stable as two mammalian retroviruses studied, i.e., feline and simian sarcoma virus. In all of eight different plasma protein preparations tested, Rous sarcoma virus was completely inactivated after a heat treatment lasting no longer than 4 hr. It is thus concluded that pasteurization of liquid plasma protein preparations at 60 degrees C over a period of 10 hr must confer safety to these products with respect to AIDS, provided that the AIDS agents are retroviruses of comparable heat stability as Rous sarcoma virus and the mammalian retroviruses tested.  相似文献   

4.
All the epidemiological features suggest that the acquired immunodeficiency syndrome (AIDS) is caused by a single transmissible agent and surely a virus. First, cytomegalovirus, Epstein-Barr virus and hepatitis B virus have been proposed as possible etiological agents of AIDS. A direct link between ubiquitous viruses and the occurrence of the disease has been discarded. At present time, etiological researches provide evidence that retroviruses are the best candidates for the etiology of AIDS. These agents could be directly responsible of the profound suppression of the cell-mediated immunity observed in patients with AIDS. Two human retroviruses are now proposed: human T-cell leukemia virus (HTLV) or lymphadenopathy associated virus (LAV). Moreover simian AIDS (SAIDS) occurred spontaneously at several primate centers in USA; a retrovirus partially related to Mason Pfizer monkey virus appears to be the etiologic agent of SAIDS.  相似文献   

5.
BackgroundThe hepatitis B, hepatitis C, human immunodeficiency viruses and Treponema pallidum are important causes of infectious diseases concern to public health.MethodsBetween 2010 and 2014, we used an automated chemiluminescence microparticle immunoassay to detect the hepatitis B, hepatitis C, and human immunodeficiency viruses as well as Treponema pallidum (the rapid plasma regain test was used in 2010–2011). Positive human immunodeficiency virus tests were confirmed via western blotting.ResultsAmong 416,130 subjects, the seroprevalences for hepatitis B virus, hepatitis C virus, human immunodeficiency virus, and Treponema pallidum were 5.72%, 1.23%, 0.196%, and 0.76%, respectively. Among 671 patients with positive human immunodeficiency virus results, 392 cases were confirmed via western blotting. Hepatitis B and human immunodeficiency virus infections were more frequent in men (7.78% and 0.26%, respectively) than in women (4.45% and 0.021%, respectively). The hepatitis B and C virus seroprevalences decreased from 6.21% and 1.58%, respectively, in 2010, to 5.37% and 0.988%, respectively, in 2014. The human immunodeficiency virus seroprevalence increased from 0.04% in 2010 to 0.17% in 2014, and was elevated in the Infectious Disease (2.65%), Emergency (1.71%), and Dermatology and Sexually Transmitted Diseases (1.12%) departments. The specificity of the human immunodeficiency virus screening was 71.4%. The false positive rates for the Treponema pallidum screening tests increased in patients who were 60–70 years old. The co-infection rates for the hepatitis C and human immunodeficiency viruses were 0.47% in hepatitis C virus-positive patients and 7.33% in human immunodeficiency virus-positive patients.ConclusionsDuring 2010–2014, hepatitis B virus and human immunodeficiency virus infections were more frequent among men at our institution. Although the seroprevalences of hepatitis B and C viruses decreased, the seroprevalence of human immunodeficiency virus infection increased (with higher seroprevalences in high-risk departments). Older patients were more likely to exhibit false positive findings for syphilis.  相似文献   

6.
7.
This study was conducted to determine whether enteric viruses (adenovirus, rotavirus, and hepatitis A virus) added to cotton cloth swatches survive the wash cycle, the rinse cycle, and a 28-min permanent press drying cycle as commonly practiced in households in the United States. Detergent with and without bleach (sodium hypochlorite) was added to washing machines containing sterile and virus-inoculated 58-cm2 swatches, 3.2 kg of cotton T-shirts and underwear, and a soiled pillowcase designed to simulate the conditions (pH, organic load, etc.) encountered in soiled laundry. The most important factors for the reduction of virus in laundry were passage through the drying cycle and the addition of sodium hypochlorite. Washing with detergent alone was not found to be effective for the removal or inactivation of enteric viruses, as significant concentrations of virus were found on the swatches (reductions of 92 to 99%). It was also demonstrated that viruses are readily transferred from contaminated cloths to uncontaminated clothes. The use of sodium hypochlorite reduced the number of infectious viruses on the swatches after washing and drying by at least 99.99%. Laundering practices in common use in the United States do not eliminate enteric and respiratory viruses from clothes. The use of bleach can further reduce the numbers of enteric viruses in laundry.  相似文献   

8.
The major 70,000- to 80,000-molecular-weight envelope glycoproteins of the squirrel monkey retrovirus, Mason-Pfizer monkey virus, and M7 baboon virus and the related endogenous feline virus, RD114, were isolated and immunologically characterized. Immunoprecipitation and competition immunoassay analysis revealed these viral envelope glycoproteins to possess several distinct classes of immunological determinants. These include species-specific determinants, group-specific antigenic determinants unique to endogenous primate type C viruses, and group-specific determinants for type D viruses such as Mason-Pfizer monkey virus and squirrel monkey retrovirus. In addition, a class of broadly reactive antigenic determinants shared by envelope glycoproteins of both type C viruses of the baboon/RD114 group and type D viruses of the Mason-Pfizer monkey virus/squirrel monkey virus group are described. Other mammalian oncornaviruses tested, including isolates of nonprimate origin and representative type B viruses, lacked these determinants. The demonstration of antigenic determinants specific to envelope glycoproteins of type C and type D primate viruses indicates either that these viruses are evolutionarily related or that genetic recombination occurred between their progenitors. Alternatively, endogenous type D oncornaviruses may be replication defective, and acquisition of endogenous type C viral genetic sequences coding for envelope glycoprotein determinants may be necessary for their isolation as infectious virus.  相似文献   

9.
Metagenomics and a panmicrobial microarray were used to examine eight live-attenuated viral vaccines. Viral nucleic acids in trivalent oral poliovirus (OPV), rubella, measles, yellow fever, varicella-zoster, multivalent measles/mumps/rubella, and two rotavirus live vaccines were partially purified, randomly amplified, and pyrosequenced. Over half a million sequence reads were generated covering from 20 to 99% of the attenuated viral genomes at depths reaching up to 8,000 reads per nucleotides. Mutations and minority variants, relative to vaccine strains, not known to affect attenuation were detected in OPV, mumps virus, and varicella-zoster virus. The anticipated detection of endogenous retroviral sequences from the producer avian and primate cells was confirmed. Avian leukosis virus (ALV), previously shown to be noninfectious for humans, was present as RNA in viral particles, while simian retrovirus (SRV) was present as genetically defective DNA. Rotarix, an orally administered rotavirus vaccine, contained porcine circovirus-1 (PCV1), a highly prevalent nonpathogenic pig virus, which has not been shown to be infectious in humans. Hybridization of vaccine nucleic acids to a panmicrobial microarray confirmed the presence of endogenous retroviral and PCV1 nucleic acids. Deep sequencing and microarrays can therefore detect attenuated virus sequence changes, minority variants, and adventitious viruses and help maintain the current safety record of live-attenuated viral vaccines.Highly effective, safe, and relatively inexpensive, live-attenuated viruses protect against numerous human and animal viral infections. Attenuation is achieved by genetically adapting viruses for replication in a different host species or under nonphysiological conditions, such that viruses lose their pathogenic potential in their original host species while remaining sufficiently antigenic to induce lasting protective immunity. Live-attenuated vaccines are highly efficacious due to the physiologic presentation of native antigen to the host''s immune system and include the earliest human vaccine developed by serial passages of rabies virus in rabbits. In very rare instances, one attenuated viral vaccine, the oral poliovirus vaccine (OPV), can accumulate mutations as well as recombine with other coinfecting enteroviruses and revert to a pathogenic state (18, 24). Attenuated live vaccines also carry a potential risk of contamination with adventitious viruses introduced during the attenuation process, from the cell lines used, and/or from the animal sera or other biologics often used in cell cultures. Very early Theiler''s yellow fever attenuated virus was once “stabilized” with human plasma thought to contain hepatitis B virus, resulting in many cases of hepatitis (5, 28). Some early Sabin poliovirus vaccines were contaminated with the simian virus 40 (SV40) polyomavirus from the monkey cells used to amplify polioviruses. While carcinogenic in rodents, SV40 has no epidemiologic association with human cancers (10). Avian leukosis virus (ALV) and endogenous avian virus (AEV) have been reported in attenuated vaccines grown in chicken embryo fibroblasts (CEF), but extensive testing has also ruled out human infections (14, 15). Vaccine-associated ALV and AEV are thought to originate from endogenous retroviruses in the chicken germ line (14, 15, 17).Because the chemical inactivation used in the manufacture of killed-virus vaccines is also likely to inactivate adventitious viruses, we focused on eight live-attenuated viruses, OPV (Biopolio), rubella (Meruvax-II), measles (Attenuvax), yellow fever (YF-Vax), human herpesvirus 3 (HHV-3) (Varivax), rotavirus (Rotarix and Rotateq), and multivalent measles/mumps/rubella (MMR-II), to resequence the attenuated viruses and test for the presence of adventitious viruses after viral particle purification, massively parallel pyrosequencing, and viral sequence similarity searches. Vaccine nucleic acids were also analyzed using a panmicrobial microarray.  相似文献   

10.
As part of the evaluation of porcine cells, tissues, and organs intended for transplantation into humans, we investigated the conditions required to induce expression and release of porcine endogenous retrovirus (PoEV) from primary cells. Pigs contain endogenous retroviral sequences encoding infectious retrovirus, yet little is known about the conditions required to activate the expression and release of PoEV from primary cells. We show here that mitogenic activation of peripheral blood mononuclear cells (PBMC) isolated from the National Institutes of Health (NIH) miniature pig and the Yucatan pig resulted in the activation and release of an infectious type C retrovirus. Coculture of activated porcine PBMC with pig or human cell lines resulted in the transfer and expression of PoEV-specific sequences and the establishment of a productive infection. Sequence comparison of portions of the PoEV pol gene expressed in pig cell lines productively infected with virus derived from NIH miniature pig and Yucatan pig PBMC revealed marked similarity, suggesting that one or a few loci may be capable of being activated to yield an infectious virus. These findings demonstrate that the presence of endogenous viruses in source animals needs to be carefully considered when the infectious disease potential of xenotransplantation is being assessed.  相似文献   

11.
Acquisition of genetic material from viruses by their hosts can generate inter-host structural genome variation. We developed computational tools enabling us to study virus-derived structural variants (SVs) in population-scale whole genome sequencing (WGS) datasets and applied them to 3,332 humans. Although SVs had already been cataloged in these subjects, we found previously-overlooked virus-derived SVs. We detected non-germline SVs derived from squirrel monkey retrovirus (SMRV), human immunodeficiency virus 1 (HIV-1), and human T lymphotropic virus (HTLV-1); these variants are attributable to infection of the sequenced lymphoblastoid cell lines (LCLs) or their progenitor cells and may impact gene expression results and the biosafety of experiments using these cells. In addition, we detected new heritable SVs derived from human herpesvirus 6 (HHV-6) and human endogenous retrovirus-K (HERV-K). We report the first solo-direct repeat (DR) HHV-6 likely to reflect DR rearrangement of a known full-length endogenous HHV-6. We used linkage disequilibrium between single nucleotide variants (SNVs) and variants in reads that align to HERV-K, which often cannot be mapped uniquely using conventional short-read sequencing analysis methods, to locate previously-unknown polymorphic HERV-K loci. Some of these loci are tightly linked to trait-associated SNVs, some are in complex genome regions inaccessible by prior methods, and some contain novel HERV-K haplotypes likely derived from gene conversion from an unknown source or introgression. These tools and results broaden our perspective on the coevolution between viruses and humans, including ongoing virus-to-human gene transfer contributing to genetic variation between humans.  相似文献   

12.
Aims: The aim of this study was to develop and demonstrate an approach for describing the diversity of human pathogenic viruses in an environmentally isolated viral metagenome. Methods and Results: In silico bioinformatic experiments were used to select an optimum annotation strategy for discovering human viruses in virome data sets and applied to annotate a class B biosolid virome. Results from the in silico study indicated that <1% errors in virus identification could be achieved when nucleotide‐based search programs (BLASTn or tBLASTx), viral genome only databases and sequence reads >200 nt were considered. Within the 51 925 annotated sequences, 94 DNA and 19 RNA sequences were identified as human viruses. Virus diversity included environmentally transmitted agents such as parechovirus, coronavirus, adenovirus and aichi virus, as well as viruses associated with chronic human infections such as human herpes and hepatitis C viruses. Conclusions: This study provided a bioinformatic approach for identifying pathogens in a virome data set and demonstrated the human virus diversity in a relevant environmental sample. Significance and Impact of the Study: As the costs of next‐generation sequencing decrease, the pathogen diversity described by virus metagenomes will provide an unbiased guide for subsequent cell culture and quantitative pathogen analyses and ensures that highly enriched and relevant pathogens are not neglected in exposure and risk assessments.  相似文献   

13.
ABSTRACT: BACKGROUND: As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. RESULTS: Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C--like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. CONCLUSIONS: Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.  相似文献   

14.
Viral enteropathogens are one of the leading causative agents of foodborne illnesses in both the United States and the European Union. While human noroviruses and hepatitis A virus cause the vast majority of outbreaks and illnesses, there are handful of human enteric viruses that contribute to sporadic outbreaks worldwide including astrovirus, sapovirus, rotavirus, enterovirus and Aichi virus. In addition, hepatitis E virus is increasingly being recognized as an emerging zoonotic threat within the food supply. This review aims to briefly describe the primary human enteric viruses of concern with respect to foodborne transmission. Next, we focus on the contamination and persistence of these viruses within three high-risk food commodities—leafy greens, soft red fruits and bivalve mollusks. As opposed to detailing the specific routes by which these foods can be contaminated with enteric viruses, we have chosen to focus on their persistence and specific interactions within the food itself. Therefore, the processes of attachment and internalization of the viruses in foods have been emphasized. Looking forward, the implications of these specific interactions of human enteric viruses with leafy greens, soft red fruits and bivalve mollusks are briefly considered within the context of future prevention and control strategies.  相似文献   

15.

Background

Since the discovery of human immunodeficiency virus (HIV-1) twenty years ago, AIDS has become one of the most studied diseases. A number of viruses have subsequently been identified to contribute to the pathogenesis of HIV and its opportunistic infections and cancers. Therefore, a multi-virus array containing eight human viruses implicated in AIDS pathogenesis was developed and its efficacy in various applications was characterized.

Results

The amplified open reading frames (ORFs) of human immunodeficiency virus type 1, human T cell leukemia virus types 1 and 2, hepatitis C virus, Epstein-Barr virus, human herpesvirus 6A and 6B, and Kaposi's sarcoma-associated herpesvirus were spotted on glass slides and hybridized to DNA and RNA samples. Using a random priming method for labeling genomic DNA or cDNA probes, we show specific detection of genomic viral DNA from cells infected with the human herpesviruses, and effectively demonstrate the inhibitory effects of a cellular cyclin dependent kinase inhibitor on viral gene expression in HIV-1 and KSHV latently infected cells. In addition, we coupled chromatin immunoprecipitation with the virus chip (ChIP-chip) to study cellular protein and DNA binding.

Conclusions

An amplicon based virus chip representing eight human viruses was successfully used to identify each virus with little cross hybridization. Furthermore, the identity of both viruses was correctly determined in co-infected cells. The utility of the virus chip was demonstrated by a variety of expression studies. Additionally, this is the first demonstrated use of ChIP-chip analysis to show specific binding of proteins to viral DNA, which, importantly, did not require further amplification for detection.  相似文献   

16.
The cocultivation of a lung cell line from the Southeast Asian mouse Mus cervicolor with cells from heterologous species has resulted in the isolation of two new distinct type C viruses. Both viruses are endogenous to M. cervicolor and are present in multiple copies in the cellular DNA of these mice. One of the viruses, designated M. cervicolor type CI, replicates readily in the SIRC rabbit cell line and is antigenically related to the infectious primate type C viruses isolated from a woolly monkey (simian sarcoma-associated virus) and gibbon apes (gibbon ape leukemia virus). This virus is also closely related by both immunological and nucleic acid hybridization criteria to a type C virus previously isolated from a second Asian murine species, Mus caroli. The isolation of the M. cervicolor type C I virus thus provides further evidence that the infectious primate type C viruses originated by trans-species infection of primates by an endogenous virus of mice. The second virus, designated M. cervicolor type C II, replicates well in various cell lines derived from the laboratory mouse Mus musculus. While antigenically related to type C viruses derived from M. musculus, the M. cervicolor type C II virus isolate can be readily distinguished from standard murine leukemia viruses. Both new type C viruses from M. cervicolor are unrelated to the previously described retrovirus (M432) isolated from the same Mus species. The DNA of M. cervicolor therefore contains multiple copies of at least three distinct classes of endogenous viral genes. An examination of the cellular DNA of other rodent species for nucleic acid sequences related to the genomes of both M. cervicolor type C I and II reveals that both viruses have been highly conserved evolutionarily, and that other species of rodents, such as laboratory mice and rats, contain endogenous virogenes related to those in the DNA of M. cervicolor.  相似文献   

17.
OBJECTIVE--To investigate the possible interference with acute hepatitis B virus infection by co-infection with hepatitis C virus. DESIGN--Analysis of stored sera collected for transfusion transmitted viruses study in 1970s. SETTING--Four major medical centres in the United States. PATIENTS--12 recipients of blood infected with hepatitis B virus. MAIN OUTCOME MEASURES--In 1970s, presence of antibodies in hepatitis B virus and raised serum alanine aminotransferase concentration; detection of antibodies to hepatitis C virus with new enzyme linked immunoassays. RESULTS--Five of the 12 patients were coinfected with hepatitis C virus. Hepatitis B surface antigen was first detected at day 59 in patients infected with hepatitis B virus alone and at day 97 in those coinfected with hepatitis C virus (p = 0.01); median durations of antigenaemia were 83 and 21 days respectively (p = 0.05), and the antigen concentration was lower in the coinfected patients. Alanine aminotransferase patterns were uniphasic when hepatitis B virus infection occurred alone (range 479-2465 IU/l) and biphasic in patients with combined acute infection (no value > 380 IU/l; p = 0.0025). Four coinfected recipients developed chronic hepatitis C virus infection. The fifth patient was followed for only four months. CONCLUSIONS--Acute coinfection with hepatitis C virus and hepatitis B virus inhibits hepatitis B virus infection in humans, and onset of hepatitis B may reduce the severity of hepatitis C virus infection but not frequency of chronicity. Alanine aminotransferase concentration showed a biphasic pattern in dual infection.  相似文献   

18.
New DNA viruses identified in patients with acute viral infection syndrome   总被引:11,自引:0,他引:11  
A sequence-independent PCR amplification method was used to identify viral nucleic acids in the plasma samples of 25 individuals presenting with symptoms of acute viral infection following high-risk behavior for human immunodeficiency virus type 1 transmission. GB virus C/hepatitis G virus was identified in three individuals and hepatitis B virus in one individual. Three previously undescribed DNA viruses were also detected, a parvovirus and two viruses related to TT virus (TTV). Nucleic acids in human plasma that were distantly related to bacterial sequences or with no detectable similarities to known sequences were also found. Nearly complete viral genome sequencing and phylogenetic analysis confirmed the presence of a new parvovirus distinct from known human and animal parvoviruses and of two related TTV-like viruses highly divergent from both the TTV and TTV-like minivirus groups. The detection of two previously undescribed viral species in a small group of individuals presenting acute viral syndrome with unknown etiology indicates that a rich yield of new human viruses may be readily identifiable using simple methods of sequence-independent nucleic acid amplification and limited sequencing.  相似文献   

19.
Prior to the recent discovery of the swine hepatitis E virus (swine HEV) in pigs from the midwestern United States, HEV was not considered endemic to this country. Since swine HEV is antigenically and genetically related to human strains of HEV, it was important to characterize this new virus further. The infectivity titer of a pool of swine HEV in pigs was determined in order to prepare a standardized reagent and to evaluate the dose response in pigs. Although the sequence of swine HEV varied extensively from those of most human strains of HEV, it was very closely related to the two strains of human HEV (US-1 and US-2) isolated in the United States. The U.S. strains which were recently recovered from two patients with clinical hepatitis E in the United States shared ≥97% amino acid identity with swine HEV in open reading frames 1 and 2. Phylogenetic analyses of different regions of the genome revealed that swine HEV and the U.S. strains grouped together and formed a distinct branch. These results suggested that swine HEV may infect humans. When we inoculated rhesus monkeys and a chimpanzee, experimental surrogates of humans, with swine HEV, the primates became infected. Furthermore, in a reciprocal experiment, specific-pathogen-free pigs were experimentally infected with the US-2 strain of human HEV that is genetically similar to swine HEV. These results provided experimental evidence for cross-species infection by the swine virus. Thus, humans appear to be at risk of infection with swine HEV or closely related viruses.  相似文献   

20.
Two viruses isolated following prolonged growth of serologically distinct mouse type C RNA viruses in human cells have previously been shown to have acquired common envelope properties distinct from those of either parental virus. Virus neutralization tests show that the viruses selected in human cells possess envelope antigens identical to those of endogenous mouse type C viruses of cells in which the parental viruses had been propagated. In contrast, the p12 polypeptide of each virus selected in human cells is antigenically indistinguishable from that of its respective parental virus and different from those of known endogenous mouse type C viruses. Molecular hybridization indicates significant differences in the genetic sequences of one virus and its parent, excluding the possibility that it arose from a point mutation. These findings indicate that the viruses selected in human cells represent genetic recombinants between exogenous and endogenous mouse type C viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号