首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
Human MUC4 mucin cDNA and its variants in pancreatic carcinoma   总被引:2,自引:0,他引:2  
The human MUC4 gene is not expressed in normal pancreas; however, its dysregulation results in high levels of expression in pancreatic tumors. To investigate the tumor-associated expression, MUC4 cDNA was cloned from a human pancreatic tumor cell line cDNA expression library using a polyclonal antibody raised against human deglycosylated mucin and RT-PCR. Pancreatic MUC4 cDNA shows differences in 12 amino acid residues in the non-tandem repeat coding region with no structural rearrangement as compared with tracheal MUC4. The full-length MUC4 cDNA includes a leader sequence, a serine and threonine rich non-tandem repeat region, a central large tandem repeat domain containing 48 bp repetitive units, regions rich in potential N-glycosylation sites, two cysteine-rich domains, EGF-like domains, and a transmembrane domain. We also report the presence of a new EGF-like domain in MUC4 cDNA, located in the cysteine-rich region upstream from the first EGF-like domain. Four distinct splice events were identified in the region downstream of the central tandem repeat domain that generate three new MUC4 cDNA sequences (sv4, sv9, and sv10). The deduced amino acid sequences of two of these variants lack the transmembrane domain. Furthermore, two unique forms of MUC4 (MUC4/Y and MUC4/X) generated as a result of alternative splicing lack the salient feature of mucins, the tandem repeat domain. A high degree of polymorphism in the central tandem repeat region of MUC4 was observed in various pancreatic adenocarcinoma cell lines, with allele sizes ranging from 23.5 to 10.0 kb. MUC4 mRNA expression was higher in differentiated cell lines, with no detectable expression in poorly differentiated pancreatic tumor cell lines.  相似文献   

4.
5.
MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.  相似文献   

6.
Transcriptional activation of the MUC2 gene by p53   总被引:6,自引:0,他引:6  
MUC2 is one of the major components of mucins that provide a protective barrier between epithelial surfaces and the gut lumen. We investigated possible alterations of MUC2 gene expression by p53 and p21(Sdi1/Waf1/Cip1) in a human colon cancer cell line, DLD-1, establishing subclones in which a tetracycline-regulatable promoter controls exogenous p53 and p21 expression. MUC2 mRNA more significantly increased in response to p53 than to p21. Unexpectedly, MUC2 expression was also induced in human osteosarcoma cells, U-2OS and Saos-2, by exogenous p53. We next performed a reporter assay to test the direct regulation of MUC2 gene expression by p53. Deletion and mutagenesis of the MUC2 promoter region showed that it contains two sites for transactivation by p53. Furthermore, an electrophoretic mobility shift assay indicated that p53 binds to those elements. We analyzed MUC2 expression in other cell types possessing a functional p53 after exposure to various forms of stress. In MCF7 breast cancer and A427 lung cancer cells, MUC2 expression was increased along with the endogenous p53 level by actinomycin D, UVC, and x-ray, but not in RERF-LC-MS lung cancer cells carrying a mutated p53. These results suggest that p53 directly activates the MUC2 gene in many cell types.  相似文献   

7.
Yonezawa S  Goto M  Yamada N  Higashi M  Nomoto M 《Proteomics》2008,8(16):3329-3341
Mucins are high molecular weight glycoproteins that play important roles in carcinogenesis or tumor invasion. To clarify the relationship of the expression patterns of mucins in human neoplasms with their biological behavior, we examined the expression profiles of MUC1, MUC2, and MUC4 mucins in various human neoplasms using immunohistochemistry and in situ hybridization, and compared them with clinicopathologic factors including outcome of the patients. MUC1 or MUC4 expression is related with the aggressive behavior of human neoplasms and a poor outcome of the patients. In contrast, MUC2 expression tends to be related with the indolent behavior of human neoplasms and a favorable outcome of the patients, although indolent pancreatobiliary neoplasms sometimes show invasive growth with MUC1 expression in the invasive areas. The expression of MUC2 mucin in indolent pancreatobiliary neoplasms coincided with expression of MUC2 mRNA. Our recent studies to clarify the MUC2 gene regulation mechanism disclosed that DNA methylation and histone modification in the 5' flanking region of the MUC2 promoter may play an important role. Further studies of the epigenetics also in MUC1 and MUC4 gene expression may be needed to understand the relationship between the expression of mucins in human neoplasms with their biological behavior.  相似文献   

8.
Mucins are a family of multifunctional glycoproteins that mostly line the surface of epithelial cells in the gastrointestinal tract and exert pivotal roles in gut lubrication and protection. Pancreatic cancer is a lethal disease with poor early diagnosis, limited therapeutic effects, and high numbers of cancer‐related deaths. In this review, we introduce the expression profiles of mucins in the normal pancreas, pancreatic precursor neoplasia and pancreatic cancer. Mucins in the pancreas contribute to biological processes such as the protection, lubrication and moisturization of epithelial tissues. They also participate in the carcinogenesis of pancreatic cancer and are used as diagnostic biomarkers and therapeutic targets. Herein, we discuss the important roles of mucins that lead to the lethality of pancreatic adenocarcinoma, particularly MUC1, MUC4, MUC5AC and MUC16 in disease progression, and present a comprehensive analysis of the clinical application of mucins and their promising roles in cancer treatment to gain a better understanding of the role of mucins in pancreatic cancer.  相似文献   

9.
The MUC6 mucin was originally isolated from stomach mucus and is one of the major secreted mucins of the digestive tract. A full-length cDNA has not been isolated for this large molecule (greater than 15 kb) and it remains poorly studied. To circumvent the lack of reagents for investigating MUC6, we isolated a cDNA clone from a human fetal pancreatic duct cDNA library that encodes 282 amino acids of the MUC6 tandem repeat. A blast search with the sequence of this cDNA clone showed 90% homology with the original MUC6 (L07517) derived from a human stomach cDNA library and 95% homology both with AK096772, a MUC6-related protein isolated from a human prostate cDNA library and the human genome project clone AC083984. The MUC6 partial cDNA clone isolated from fetal pancreas was inserted into an epitope-tagged MUC1 mucin molecule in place of the native tandem repeat. This chimeric mucin was expressed in human pancreatic (Panc1) and colon (Caco2) carcinoma cell lines and purified for analysis of O-glycosylation by fast atom bombardment mass spectrometry (FAB-MS). The FAB-MS spectra showed O-glycans that had been detected previously on chimeric mucins carrying different tandem repeats, though the spectra for MUC1F/6TR mucins expressed in the Panc1 and Caco2 cells were very different. There was a paucity of O-glycosylation in Panc1 cells in comparison to Caco2 cells where many more structures were evident, and the most abundant glycans in Panc1 cells were sialylated.  相似文献   

10.
11.
MUC17, a novel membrane-tethered mucin   总被引:13,自引:0,他引:13  
Membrane mucins have several functions in epithelial cells including cytoprotection, extravasation during metastases, maintenance of luminal structure, and signal transduction. In this paper we describe a large membrane mucin expressed in the normal intestine. This novel mucin, designated MUC17, contains an extended, repetitive extracellular glycosylation domain and a carboxyl terminus with two EGF-like domains, a SEA module domain, a transmembrane domain, and a cytoplasmic domain with potential serine and tyrosine phosphorylation sites. RNA blot analysis and in situ hybridization indicates that MUC17 is expressed in select pancreatic and colon cancer cell lines and in intestinal absorptive cells. Radiation hybrid mapping localized MUC17 to chromosome 7q22 where it resides in close proximity with three other membrane mucin genes, MUC3A, MUC3B, and MUC12. Thus, these membrane mucins reside together in a gene cluster, but are expressed in different tissues and are likely to have different functions as well.  相似文献   

12.
The mucin MUC4 and its membrane partner the ErbB2 oncogenic receptor are potential interacting partners in human pancreatic tumour development. However, the way they function is still largely unknown. In this work, we aimed to identify the cellular mechanisms and the intracellular signalling pathways under the control of both ErbB2 and MUC4 in a human pancreatic adenocarcinomatous cell line. Using co-immunoprecipitation and GST pull-down, we show that MUC4 and ErbB2 interact in the human pancreatic adenocarcinomatous cell line CAPAN-2 via the EGF domains of MUC4. Stable cell clones were generated in which either MUC4 or ErbB2 were knocked down (KD) by a shRNA approach. Biological properties of these cells were then studied in vitro and in vivo. Our results show that ErbB2-KD cells are more apoptotic and less proliferative (decreased cyclin D1 and increased p27kip1 expression) while migration and invasive properties were not altered. MUC4-KD clones were less proliferative with decreased cyclin D1 expression, G1 cell cycle arrest and altered ErbB2/ErbB3 expression. Their migration properties were reduced whereas invasive properties were increased. Importantly, inhibition of ErbB2 and MUC4 expression did not impair the same signalling pathways (inhibition of MUC4 expression affected the JNK pathway whereas that of ErbB2 altered the MAPK pathway). Finally, ErbB2-KD and MUC4-KD cells showed impaired tumour growth in vivo. Our results show that ErbB2 and MUC4, which interact physically, activate different intracellular signalling pathways to regulate biological properties of CAPAN-2 pancreatic cancer cells.  相似文献   

13.
14.
Mucin secreted by mucosal epithelial cells plays a role in the protection of the mucosal surface and also is involved in pathological processes. So far, MUC1-4, 5AC, 5B, 6-8, 11-13 and 15-17 genes coding the backbone mucin core protein have been identified in humans. Their diverse physiological distribution and pathological alterations have been reported. Trefoil factor family (TFF) peptides are mucin-associated molecules co-expressed with MUC mucins and involved in the maintenance of mucosal barrier and the biological behavior of epithelial and carcinoma cells. Intrahepatic biliary system is a route linking the bile canaliculi and the extrahepatic bile duct for the excretion of bile synthesized by hepatocytes. Biliary epithelial cells line in the intrahepatic biliary system, secreting mucin and other molecules involved in the maintenance and regulation of the system. In this review, the latest information regarding properties, expression profiles and regulation of MUC mucins and TFF peptides in the intrahepatic biliary system is summarized. In particular, we focus on the expression profiles and their significance of MUC mucins in developmental and normal livers, various hepatobiliary diseases and intrahepatic cholangiocarcinoma.  相似文献   

15.
16.
MUC4, a transmembrane mucin, is aberrantly expressed in pancreatic adenocarcinomas while remaining undetectable in the normal pancreas. Recent studies have shown that the expression of MUC4 is associated with the progression of pancreatic cancer and is inversely correlated with the prognosis of pancreatic cancer patients. In the present study, we have examined the phenotypic and molecular consequences of MUC4 silencing with an aim of establishing the mechanistic basis for its observed role in the pathogenesis of pancreatic cancer. The silencing of MUC4 expression was achieved by stable expression of a MUC4-specific short hairpin RNA in CD18/HPAF, a highly metastatic pancreatic adenocarcinoma cell line. A significant decrease in MUC4 expression was detected in MUC4-knockdown (CD18/HPAF-siMUC4) cells compared with the parental and scrambled short interfering RNA-transfected (CD18/HPAF-Scr) control cells by immunoblot analysis and immunofluorescence confocal microscopy. Consistent with our previous observation, inhibition of MUC4 expression restrained the pancreatic tumor cell growth and metastasis as shown in an orthotopic mouse model. Our in vitro studies revealed that MUC4-associated increase in tumor cell growth resulted from both the enhanced proliferation and reduced cell death. Furthermore, MUC4 expression was also associated with significantly increased invasiveness (P < or = 0.05) and changes in actin organization. The presence of MUC4 on the cell surface was shown to interfere with the tumor cell-extracellular matrix interactions, in part, by inhibiting the integrin-mediated cell adhesion. An altered expression of growth- and metastasis-associated genes (LI-cadherin, CEACAM6, RAC1, AnnexinA1, thrombomodulin, epiregulin, S100A4, TP53, TP53BP, caspase-2, caspase-3, caspase-7, plakoglobin, and neuregulin-2) was also observed as a consequence of the silencing of MUC4. In conclusion, our study provides experimental evidence that supports the functional significance of MUC4 in pancreatic cancer progression and indicates a novel role for MUC4 in cancer cell signaling.  相似文献   

17.
18.
19.
The in vitro anti-proliferative properties of various supernatants from MUC1-expressing cell lines and of purified preparations of MUC1 were evaluated. We have observed that supernatants from the MUC1- and MUC3-positive cell line T47D, but not from the MUC1- and MUC4-positive cell line MCF7, were able to inhibit proliferation of cells from various haematopoietic cell lines. Although the activity of T47D supernatants could be abrogated by immunodepletion of MUC1, immunopurified MUC1 from T47D was unable to inhibit cell proliferation. Significantly, supernatants from mouse 3T3 cells transfected with a secreted form of MUC1 or from BHK-21 cells infected with a recombinant vaccinia virus coding for the secreted form of MUC1, as well as preparations of purified MUC1 from bile or urine, were likewise unable to inhibit T cell proliferation. Surprisingly, a crude mixture of bile mucins had a suppressive effect on T cell growth. Our results suggest that other molecules, such as amino sugars or other mucins, which can associate with MUC1, are likely to be responsible for the observed anti-proliferative effects of T47D cells. Received: 20 August 1998 / Accepted: 3 December 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号