首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cohesin plays a critical role in sister chromatid cohesion, double-stranded DNA break repair and regulation of gene expression. However, the mechanism of how cohesin directly interacts with DNA remains unclear. We report single-molecule experiments analyzing the interaction of the budding yeast cohesin Structural Maintenance of Chromosome (SMC)1-SMC3 heterodimer with naked double-helix DNA. The cohesin heterodimer is able to compact DNA molecules against applied forces of 0.45 pN, via a series of extension steps of a well-defined size ≈130 nm. This reaction does not require ATP, but is dependent on DNA supercoiling: DNA with positive torsional stress is compacted more quickly than negatively supercoiled or nicked DNAs. Un-nicked torsionally relaxed DNA is a poor substrate for the compaction reaction. Experiments with mutant proteins indicate that the dimerization hinge region is crucial to the folding reaction. We conclude that the SMC1-SMC3 heterodimer is able to restructure the DNA double helix into a series of loops, with a preference for positive writhe.  相似文献   

3.
Torque-limited RecA polymerization on dsDNA   总被引:2,自引:2,他引:0       下载免费PDF全文
The assembly of RecA onto a torsionally constrained double-stranded DNA molecule was followed in real time using magnetic tweezers. Formation of a RecA–DNA filament on the DNA tether was stalled owing to different physical processes depending on the applied stretching force. For forces up to 3.6 pN, the reaction stalled owing to the formation of positive plectonemes in the remaining DNA molecule. Release of these plectonemes by rotation of the magnets led to full coverage of the DNA molecule by RecA. At stretching forces larger than 3.6 pN, the twist induced during filament formation caused the reaction to stall before positive supercoils were generated. We deduce a maximum built-up torsion of 10.1 ± 0.7 kbT. In vivo this built-up torsion may be used to favor regression of a stalled replication fork or to free the chromosomal DNA in E.coli from its condensing proteins.  相似文献   

4.
Monte Carlo implementation of supercoiled double-stranded DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Metropolis Monte Carlo simulation is used to investigate the elasticity of torsionally stressed double-stranded DNA, in which twist and supercoiling are incorporated as a natural result of base-stacking interaction and backbone bending constrained by hydrogen bonds formed between DNA complementary nucleotide bases. Three evident regimes are found in extension versus torsion and force versus extension plots: a low-force regime in which over- and underwound molecules behave similarly under stretching; an intermediate-force regime in which chirality appears for negatively and positively supercoiled DNA and extension of underwound molecule is insensitive to the supercoiling degree of the polymer; and a large-force regime in which plectonemic DNA is fully converted to extended DNA and supercoiled DNA behaves quite like a torsionless molecule. The striking coincidence between theoretic calculations and recent experimental measurement of torsionally stretched DNA (Strick et al., Science. 271:1835, 1996; Biophys. J. 74:2016, 1998) strongly suggests that the interplay between base-stacking interaction and permanent hydrogen-bond constraint takes an important role in understanding the novel properties of elasticity of supercoiled DNA polymer.  相似文献   

5.
To develop a simple, speedy, economical and widely applicable method for multiple-site mutagenesis, we have substantially modified the Quik-Change™ Site-Directed Mutagenesis Kit protocol (Stratagene, La Jolla, CA). Our new protocol consists of (i) a PCR reaction using an in vitro technique, LDA (ligation-during-amplification), (ii) a DpnI treatment to digest parental DNA and to make megaprimers and (iii) a synthesis of double-stranded plasmid DNA for bacterial transformation. While the Quik Change™ Kit protocol introduces mutations at a single site, requiring two complementary mutagenic oligonucleotides, our new protocol requires only one mutagenic oligonucleotide for a mutation site, and can introduce mutations in a plasmid at multiple sites simultaneously. A targeting efficiency >70% was consistently achieved for multiple-site mutagenesis. Furthermore, the new protocol allows random mutagenesis with degenerative primers, because it does not use two complementary primers. Our mutagenesis strategy was successfully used to alter the fluorescence properties of green fluorescent protein (GFP), creating a new-color GFP mutant, cyan-green fluorescent protein (CGFP). An eminent feature of CGFP is its remarkable stability in a wide pH range (pH 4–12). The use of CGFP would allow us to monitor protein localization quantitatively in acidic organelles in secretory pathways.  相似文献   

6.
The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage.  相似文献   

7.
Abstract

We present a simplified paraffin embedding method suitable for unsuberized or unlignified small botanical samples (diameter < 0.3 cm). Only 2 h are required to yield plant tissues embedded in paraffin for anatomical observation and molecular analysis. Our method achieved morphological preservation of cell structures and conservation of nucleic acids that were equivalent to the traditional protocol. Fourier transform infrared spectrometry showed that the degree of degradation of the cytoplasmic components (e.g., protein) resulting from our simplified protocol was similar to that of the traditional protocol. The DNA samples embedded using the simplified method was extractable and could be used for PCR analysis. The DNA quality was equivalent to that embedded using the traditional method.  相似文献   

8.
Gibson assembly (GA) cloning offers a rapid, reliable, and flexible alternative to conventional DNA cloning methods. We used GA to create customized plasmids for expression of exogenous genes in mouse embryonic stem cells (mESCs). Expression of exogenous genes under the control of the SV40 or human cytomegalovirus promoters diminishes quickly after transfection into mESCs. A remedy for this diminished expression is to use the human elongation factor-1 alpha (hEF1α) promoter to drive gene expression. Plasmid vectors containing hEF1α are not as widely available as SV40- or CMV-containing plasmids, especially those also containing N-terminal 3xFLAG-tags. The protocol described here is a rapid method to create plasmids expressing FLAG-tagged CstF-64 and CstF-64 mutant under the expressional regulation of the hEF1α promoter. GA uses a blend of DNA exonuclease, DNA polymerase and DNA ligase to make cloning of overlapping ends of DNA fragments possible. Based on the template DNAs we had available, we designed our constructs to be assembled into a single sequence. Our design used four DNA fragments: pcDNA 3.1 vector backbone, hEF1α promoter part 1, hEF1α promoter part 2 (which contained 3xFLAG-tag purchased as a double-stranded synthetic DNA fragment), and either CstF-64 or specific CstF-64 mutant. The sequences of these fragments were uploaded to a primer generation tool to design appropriate PCR primers for generating the DNA fragments. After PCR, DNA fragments were mixed with the vector containing the selective marker and the GA cloning reaction was assembled. Plasmids from individual transformed bacterial colonies were isolated. Initial screen of the plasmids was done by restriction digestion, followed by sequencing. In conclusion, GA allowed us to create customized plasmids for gene expression in 5 days, including construct screens and verification.  相似文献   

9.
Ethidium bromide (EtBr) is the conventional intercalator for visualizing DNA. Previous studies suggested that EtBr lengthens and unwinds double-stranded DNA (dsDNA). However, no one has observed the unwinding of a single dsDNA molecule during intercalation. We developed a simple method to observe the twisting motions of a single dsDNA molecule under an optical microscope. A short dsDNA was attached to a glass surface of a flow chamber at one end and to a doublet bead as a rotation marker at the other end. After the addition and removal of EtBr, the bead revolved in opposite directions that corresponded to the unwinding and rewinding of a dsDNA, respectively. The amount of intercalating EtBr was estimated from the revolutions of the bead. EtBr occupied 57% of base pairs on a single dsDNA at 1 mM of EtBr, indicating that EtBr molecules could bind at contiguous sites to each other. The isotherm of intercalation showed that negative cooperativity existed between adjoining EtBr molecules. The association constant of EtBr and dsDNA (1.9 (±0.1) × 105 M−1) was consistent with that of previous results. Our system is useful to investigate the twisting of a single dsDNA interacting with various chemicals and biomolecules.  相似文献   

10.
Different chemical methods used to attach oligonucleotides by their 5′-end on a glass surface were tested in the framework of solid phase PCR where surface-bound instead of freely-diffusing primers are used to amplify DNA. Each method was first evaluated for its capacity to provide a high surface coverage of oligonucleotides essentially attached via a 5′-specific linkage that satisfyingly withstands PCR conditions and leaves the 3′-ends available for DNA polymerase activity. The best results were obtained with 5′-thiol-modified oligonucleotides attached to amino-silanised glass slides using a heterobifunctional cross-linker reagent. It was then demonstrated that the primers bound to the glass surface using the optimal chemistry can be involved in attaching and amplifying DNA molecules present in the reaction mix in the absence of freely-diffusing primers. Two distinct amplification processes called interfacial and surface amplification have been observed and characterised. The newly synthesised DNA can be detected and quantified by radioactive and fluorescent hybridisation assays. These new surface amplification processes are seen as an interesting approach for attachment of DNA molecules by their 5′-end on a solid support and can be used as an alternative route for producing DNA chips for genomic studies.  相似文献   

11.
Attachment of proteins to the 3′ end of DNA increases stability of the DNA in serum and retards clearance of DNA by major organs, thereby enhancing in vivo half-life and therapeutic potential of DNA. Unfortunately, the length of DNA molecules that can be produced with 3 ′ modifications by solid-phase synthesis for protein attachment is limited to 45–60 nucleotides due to uncertainties about sequence fidelity for longer oligonucleotides. Here we describe selective covalent coupling of proteins or other molecules to the 3′-adenine overhang of unlabeled and fluorophore-labeled double-stranded polymerase chain reaction products putatively at the N6 position of adenine using 2.5% glutaraldehyde at pH 6.0 and 4°C for at least 16 h. Gel mobility shift analyses and fluorescence analyses of the shifted bands supported conjugate formation between double-stranded polymerase chain reaction products and β2-microglobulin. In addition, blunt-ended DNA ladder fragments treated with glutaraldehyde at 4°C showed no evidence of DNA–DNA or DNA–protein conjugate formation. With the present cold glutaraldehyde technique, longer DNA–3′-protein conjugates might be easily mass-produced. The protein portion of a DNA–3′-protein conjugate could possess functionality as well, such as receptor binding for cell entry, cytotoxicity, or opsonization.  相似文献   

12.
New measurements of DNA twist elasticity.   总被引:1,自引:1,他引:0       下载免费PDF全文
P Nelson 《Biophysical journal》1998,74(5):2501-2503
The symmetries of the DNA double helix require a new term in its linear response to stress: the coupling between twist and stretch. Recent experiments with torsionally constrained single molecules give the first direct measurement of this new material parameter. We extract its value from a recent experiment. Finally, we sketch the effect of constrained twist on entropic elasticity of DNA arising from the connection between Link, Twist, and Writhe.  相似文献   

13.
14.
We have developed a novel multiplex quantitative DNA array based PCR method (MQDA-PCR). The MQDA-PCR is general and may be used in all areas of biological science where simultaneous quantification of multiple gene targets is desired. We used quantification of transgenic maize in food and feed as a model system to show the applicability of the method. The method is based on a two-step PCR. In the first few cycles bipartite primers containing a universal 5′ ‘HEAD’ region and a 3′ region specific to each genetically modified (GM) construct are employed. The unused primers are then degraded with a single-strand DNA-specific exonuclease. The second step of the PCR is run containing only primers consisting of the universal HEAD region. The removal of the primers is essential to create a competitive, and thus quantitative PCR. Oligo nucleotides hybridising to internal segments of the PCR products are then sequence specifically labelled in a cyclic linear signal amplification reaction. This is done both to increase the sensitivity and the specificity of the assay. Hybridisation of the labelled oligonucleotides to their complementary sequences in a DNA array enables multiplex detection. Quantitative information was obtained in the range 0.1–2% for the different GM constructs tested. Seventeen different food and feed samples were screened using a twelve-plex system for simultaneous detection of seven different GM maize events (Bt176, Bt11, Mon810, T25, GA21, CBH351 and DBT418). Ten samples were GM positive containing mainly mixtures of Mon810, Bt11 and Bt176 DNA. One sample contained appreciable amounts of GA21. An eight-plex MQDA-PCR system for detection of Mon810, Bt11 and Bt176 was evaluated by comparison with simplex 5′ nuclease PCRs. There were no significant differences in the quantifications using the two approaches. The samples could, by both methods, be quantified as containing >2%, between 1 and 2%, between 0.1 and 1%, or <0.1% in 43 out of 47 determinations. The described method is modular, and thus suited for future needs in GM detection.  相似文献   

15.
A microsatellite-enriched library of plateau pika(Ochotona curzoniae)was constructed according to the strong affinity between biotin and streptavidin.Firstly,genomic DNA was fragmented by ultrasonication,which is a major improvement over traditional methods.Linker-ligated DNA fragments were hybridized with biotinylated microsatellite probes,and then were subjected to streptavidin-coated magnetic beads.PCR amplification was performed to obtain double-stranded DNA fragments containing microsatellites.Ligation and transformation were carried out by using the pGEM-T Vector System Ⅰ and Escherichia coli DH10B competent cells.Sequencing results showed that 80.2% of clones contained microsatellite repeat motif.Several modifications make this protocol time-efficient and technically easier than the traditional ones; particularly,composition and relative abundance of microsatellite repeats in plateau pika genome were truly represented through the optimized PCR conditions.This method has also been successfully applied to construct microsatellite-enriched genomic libraries of Chinese hamster(Cricetulus griseus)and small abalone[Haliotis diversicolor(Reeve)]with high rates of positive clones,demonstrating its feasibility and stability.  相似文献   

16.
About 40% of the hotspots for meiotic recombination contain the degenerate consensus sequence 5′-CCNCCNTNNCCNC-3′. Here we present a novel protocol for enriching hotspot sequences from digested genomic DNA by using biotinylated oligonucleotides and streptavidin-coated magnetic beads. The captured hotspots can be released by simple digestion with restriction enzymes for subsequent characterization by second generation sequencing or PCR. The capture protocol specifically enriches hotspot sequences, judged by using fluorophore-conjugated synthetic oligonucleotides and synthetic double-stranded oligonucleotides in combination with PCR. The capture protocol enriches single-stranded DNA, denatured double-stranded DNA, and large fragments (> 3000 bp) of digested plasmid DNA with good efficacy. No false positive and false negatives were detected when enriching digested DNA from human cell cultures and primary human cells. The protocol can probably be adapted to enriching sequences other than the hotspot sequence by altering the sequence in the capture oligonucleotide. We intend to apply this protocol in studies assessing effects of micronutrient status on meiotic recombination events in human sperm.  相似文献   

17.
Nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) was expressed in Escherichia coli and purified. The protein displayed a variety of activities on DNA structure, all reflecting an ability to promote transition between double-helical and single-stranded conformations. We found that, in addition to its previously described ability to accelerate renaturation of complementary DNA strands, the HIV-1 NC protein could substantially lower the melting temperature of duplex DNA and could promote strand exchange between double-stranded and single-stranded DNA molecules. Moreover, in the presence of HIV-1 NC, annealing of a single-stranded DNA molecule to a complementary DNA strand that would yield a more stable double-stranded product was favored over annealing to alternative complementary DNA strands that would form less stable duplex products (selective annealing). NC thus appears to lower the kinetic barrier so that double-strand <==> single-strand equilibrium is rapidly reached to favor the lowest free-energy nucleic acid conformation. This activity of NC may be important for correct folding of viral genomic RNA and may have practical applications.  相似文献   

18.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

19.
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1–2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.  相似文献   

20.
Isolation of high-quality DNA from rosaceous species is particularly difficult because of their high levels of polyphenols, polysaccharides, and other compounds. The yields and quality of genomic DNA are considerably affected when the common protocol for DNA isolation is applied to the chestnut rose (Rosa roxburghii Tratt). A simple, rapid, and efficient protocol for the extraction of DNA from the chestnut rose is described. The modified hexadecyltrimethylammonium bromide (CTAB) procedure, which uses phenol-absent extraction to enhance the yield, involves a washing step before extraction for the removal of organic molecules and excessive water; the use of high concentrations of polyvinylpyrrolidone (2% [w/v]), CTAB (3% [w/v]), and β-mercaptoethanol (3% [v/v]) in the high-salt-concentration extraction buffer to remove polyphenols and polysaccharides; and the combined use of potassium acetate and chloroform to remove proteins and polysaccharides. Finally, DNA is precipitated with an equal volume of isopropanol and 0.1 vol of sodium acetate. This protocol results in high yields of DNA. The average yield of DNA ranged from 980–1800 μg/g of fresh weight of leaves. Downstream results indicate that DNA quality is sufficient for restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR) analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号