首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation.  相似文献   

2.
Clostridium perfringens ε-toxin (ETX) is a potent pore-forming toxin responsible for a central nervous system (CNS) disease in ruminant animals with characteristics of blood-brain barrier (BBB) dysfunction and white matter injury. ETX has been proposed as a potential causative agent for Multiple Sclerosis (MS), a human disease that begins with BBB breakdown and injury to myelin forming cells of the CNS. The receptor for ETX is unknown. Here we show that both binding of ETX to mammalian cells and cytotoxicity requires the tetraspan proteolipid Myelin and Lymphocyte protein (MAL). While native Chinese Hamster Ovary (CHO) cells are resistant to ETX, exogenous expression of MAL in CHO cells confers both ETX binding and susceptibility to ETX-mediated cell death. Cells expressing rat MAL are ~100 times more sensitive to ETX than cells expressing similar levels of human MAL. Insertion of the FLAG sequence into the second extracellular loop of MAL abolishes ETX binding and cytotoxicity. ETX is known to bind specifically and with high affinity to intestinal epithelium, renal tubules, brain endothelial cells and myelin. We identify specific binding of ETX to these structures and additionally show binding to retinal microvasculature and the squamous epithelial cells of the sclera in wild-type mice. In contrast, there is a complete absence of ETX binding to tissues from MAL knockout (MAL-/-) mice. Furthermore, MAL-/- mice exhibit complete resistance to ETX at doses in excess of 1000 times the symptomatic dose for wild-type mice. We conclude that MAL is required for both ETX binding and cytotoxicity.  相似文献   

3.
Epsilon toxin (ETX) is a 33‐kDa pore‐forming toxin produced by type B and D strains of Clostridium perfringens. We previously found that ETX caused haemolysis of human red blood cells, but not of erythrocytes from other species. The cellular and molecular mechanisms of ETX‐mediated haemolysis are not well understood. Here, we investigated the effects of ETX on erythrocyte volume and the role of the putative myelin and lymphocyte (MAL) receptors in ETX‐mediated haemolysis. We observed that ETX initially decreased erythrocyte size, followed by a gradual increase in volume until lysis. Moreover, ETX triggered phosphatidylserine (PS) exposure and enhanced ceramide abundance in erythrocytes. Cell shrinkage, PS exposure and enhanced ceramide abundance were preceded by increases in intracellular Ca2+ concentration. Interestingly, lentivirus‐mediated RNA interference studies in the human erythroleukaemia cell line (HEL) cells confirmed that MAL contributes to ETX‐induced cytotoxicity. Additionally, ETX was shown to bind to MAL in vitro. The results of this study recommend that ETX‐mediated haemolysis is associated with MAL receptor activation in human erythrocytes. These data imply that interventions affecting local MAL‐mediated autocrine and paracrine signalling may prevent ETX‐mediated erythrocyte damage.  相似文献   

4.
Epsilon toxin secreted by Clostridium perfringens types B and D has been directly implicated as the causative agent of fatal enterotoxemia in domestic animals. The aim of the present study is to use in silico approach for identification of B-cell epitope(s) of epsilon toxin, and its expression in fusion with a carrier protein to analyze its potential as vaccine candidate(s). Using different computational analyses and bioinformatics tools, a number of antigenic determinant regions of epsilon toxin were identified. One of the B cell epitopes of epsilon toxin comprising the region (amino acids 40-62) was identified as a promising antigenic determinant. This Etx epitope (Etx40-62) was cloned and expressed as a translational fusion with B-subunit of heat labile enterotoxin (LTB) of E. coli in a secretory expression system. Similar to the native LTB, the recombinant fusion protein retained the ability to pentamerize and bind to GM1 ganglioside receptor of LTB. The rLTB.Etx40-62 could be detected both with anti-Etx and anti-LTB antisera. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens.

Abbreviations

aa - amino acid(s), Etx - epsilon toxin of Clostridium perfringens, LTB - B-subunit of heat labile enterotoxin of E. coli.  相似文献   

5.
Clostridium perfringens type D produces enterotoxemia, an enteric disease in ruminants, also known as pulpy kidney disease. Caused by epsilon toxin, enterotoxemia is a major exotoxin produced by this microorganism. Epsilon toxin is also the main component of vaccines against this enteric disorder. In this study, a standardized dot-blot was used to choose strains of C. perfringens type D that are producers of epsilon toxin. Clones producing epsilon toxin were chosen by limiting dilution; after three passages, lethal minimum dose titers were determined by soroneutralization test in mice. These clones produced epsilon toxin 240 times more concentrated than the original strain. The presence of the epsilon toxin gene (etx) was verified by polymerase chain reaction. All clones were positive, including those determined to be negative by dot-blot tests, suggesting that mechanisms in addition to the presence of the etx gene can influence toxin production. The dot-blot test was efficient for the selection of toxigenic colonies of C. perfringens type D and demonstrated that homogeneous populations selected from toxigenic cultures produce higher titers of epsilon toxin.  相似文献   

6.
A solid-phase radioimmune assay was developed for the epsilon toxin from Clostridium perfringens type D. The assay is highly efficient, allowing for use in quantitating the antigen in crude as well as purified preparations of material.  相似文献   

7.
Thirty-one soil samples were examined for the presence of organisms capable of inhibiting growth and toxin production of strains of Clostridium botulinum type A. Such organisms were found in eight samples of soil. Inhibiting strains of C. perfringens were found in five samples, of C. sporogenes in three and of Bacillus cereus in three. Three of the C. perfringens strains produced an inhibitor effective on all 11 strains of C. botulinum type A against which they were tested, seven of eight proteolytic type B strains, one nonproteolytic type B strain, five of nine type E strains and all seven type F strains, whether proteolytic or nonproteolytic. They did not inhibit any of 26 type C strains, 6 type D strains, 4 type E strains, or 24 C. sporogenes strains. In mixed culture, an inhibitor strain of C. perfringens repressed growth and toxin production by a C. botulinum type A strain even though it was outnumbered by the latter about 40 times. It also repressed growth and toxin production of C. botulinum in mixed culture of soils in which this latter organism naturally occurred when cooked meat medium but not when trypticase medium was used.  相似文献   

8.
Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing''s chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.  相似文献   

9.
Epsilon toxin (ETX) is an extremely potent pore‐forming toxin and a category B biological agent. ETX is a major virulence determinant of Clostridium perfringens toxinotypes B and D, and is implicated in pathogenesis of rapidly fatal economically important pulpy kidney disease in lambs caused by toxinotype D. Despite being a toxin, ETX can be utilized as a tool to target glutamatergic neurons and for drug delivery into the CNS. 2DE‐MS approach was employed to elucidate the host response to ETX following intravenous injection in mouse model. In total, 136 proteins were identified either differentially expressed in brain (18) and kidney (33); showing specific interaction with ETX from lysates of brain (4), kidney (21), or from plasma (42); and urine markers (18) of intoxication. Differentially expressed proteins in kidney included those involved in calcium homeostasis and cytoskeletal organization. Proteins involved in ER and oxidative stress and energy metabolism also showed differential levels in the target tissue after ETX treatment. The known functions of the proteins differentially expressed and those interacting with ETX indicate involvement of interlinked pathways. This study provides first proteomic account of host response to ETX exposure providing clues to mechanism of toxicity and potential therapeutic targets.  相似文献   

10.
A proteomics assay was set up to analyze food substrates for eight toxins of the CBRN (chemical, biological, radiological and nuclear) threat, namely ricin, Clostridium perfringens epsilon toxin (ETX), Staphylococcus aureus enterotoxins (SEA, SEB and SED), shigatoxins from Shigella dysenteriae and entero‐hemorragic Escherichia coli strains (STX1 and STX2) and Campylobacter jejuni cytolethal distending toxin (CDT). The assay developed was based on an antibody‐free sample preparation followed by bottom‐up LC‐MS/MS analysis operated in targeted mode. Highly specific detection and absolute quantification were obtained using isotopically labeled proteins (PSAQ standards) spiked into the food matrix. The sensitivity of the assay for the eight toxins was lower than the oral LD50 which would likely be used in a criminal contamination of food supply. This assay should be useful in monitoring biological threats. In the public‐health domain, it opens the way for multiplex investigation of food‐borne toxins using targeted LC‐MS/MS.  相似文献   

11.
Epsilon-toxin (ETX) is a powerful toxin produced by some strains of Clostridium perfringens (classified as types B and D) that is responsible for enterotoxemia in animals. ETX forms pores through the plasma membrane of eukaryotic cells, consisting of a β-barrel of 14 amphipathic β-strands. ETX shows a high specificity for certain cell lines, of which Madin–Darby canine kidney (MDCK) is the first sensitive cell line identified and the most studied one. The aim of this study was to establish the role of lipids in the toxicity caused by ETX and the correlation of its activity in model and biological membranes. In MDCK cells, using cell counting and confocal microscopy, we have observed that the toxin causes cell death mediated by toxin binding to plasma membrane. Moreover, ETX binds and permeabilizes the membranes of giant plasma membrane vesicles (GPMV). However, little effect is observed on protein-free vesicles. The data suggest the essential role of a protein receptor for the toxin in cell membranes.  相似文献   

12.
Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium that ubiquitously inhabits a wide variety of natural environments including the gastrointestinal tract of humans and animals. C. perfringens is an opportunistic enteropathogen capable of producing at least 20 different toxins in various combinations. Strains of C. perfringens are currently categorized into 7 toxinotypes (A, B, C, D, E, F, and G) based on the presence or absence of 6 typing-toxins (α, β, epsilon, iota, enterotoxin, and netB). Each toxinotype is associated with specific histotoxic and enteric diseases. Spontaneous enteritis due to C. perfringens has been reported in laboratory animals; however, the source of the bacteria was unknown. The Quality Assurance Laboratory (QAL) at the National Institute of Environmental Health Sciences (NIEHS) routinely screens incoming animal feeds for aerobic, enteric pathogens, such as Salmonella spp. and E. coli. Recently, QAL incorporated anaerobic screening of incoming animal feeds. To date, the lab has isolated numerous Clostridium species, including C. perfringens, from 23 lots of natural ingredient laboratory animal diets. Published reports of C. perfringens isolation from laboratory animal feeds could not be found in the literature. Therefore, we performed a toxin profile screen of our isolated strains of C. perfringens using PCR to determine which toxinotypes were present in the laboratory animal diets. Our results showed that most C. perfringens strains we isolated from the laboratory animal feed were toxinotype A with most strains also possessing the theta toxin. Two of the C. perfringens strains also possessed the β toxin. Our results demonstrated the presence of C. perfringens in nonsterile, natural ingredient feeds for laboratory animals which could serve as a source of this opportunistic pathogen.  相似文献   

13.
Incidence of Clostridium perfringens in American Foods   总被引:4,自引:1,他引:3       下载免费PDF全文
Food samples were examined for the presence of Clostridium perfringens. A medium described by Mossel and later modified by Angelotti et al. was used for the detection and enumeration of C. perfringens. The incidence of C. perfringens observed in the foods examined was 6.1%. C. perfringens was recovered from 2.7% of the commercially prepared frozen foods, 3.8% of fruits and vegetables, 5.0% of spices, 1.8% of home-prepared foods, and 16.4% of raw meat, poultry, and fish.  相似文献   

14.
Popoff MR 《The FEBS journal》2011,278(23):4602-4615
Epsilon toxin (ETX) is produced by strains of Clostridium perfringens classified as type B or type D. ETX belongs to the heptameric β-pore-forming toxins including aerolysin and Clostridium septicum alpha toxin, which are characterized by the formation of a pore through the plasma membrane of eukaryotic cells consisting in a β-barrel of 14 amphipatic β strands. By contrast to aerolysin and C. septicum alpha toxin, ETX is a much more potent toxin and is responsible for enterotoxemia in animals, mainly sheep. ETX induces perivascular edema in various tissues and accumulates in particular in the kidneys and brain, where it causes edema and necrotic lesions. ETX is able to pass through the blood-brain barrier and stimulate the release of glutamate, which accounts for the symptoms of nervous excitation observed in animal enterotoxemia. At the cellular level, ETX causes rapid swelling followed by cell death involving necrosis. The precise mode of action of ETX remains to be determined. ETX is a powerful toxin, however, it also represents a unique tool with which to vehicle drugs into the central nervous system or target glutamatergic neurons.  相似文献   

15.
《Gene》1997,203(1):65-73
A novel toxin (Beta2) and its gene were characterized from a Clostridium perfringens strain isolated from a piglet with necrotic enteritis. At the amino-acid level, Beta2 toxin (27 670 Da) has no significant homology with the previously identified Beta toxin (called Beta1) (34 861 kDa) from C. perfringens type B NCTC8533 ( Hunter, S.E.C., Brown, J.E., Oyston, P.C.F., Sakurai, J., Titball, R.W., 1993. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 61, 3958–3965). Both Beta1 and Beta2 toxins were lethal for mice and cytotoxic for the cell line I407, inducing cell rounding and lysis without affecting the actin cytoskeleton. The genes encoding Beta1 and Beta2 toxins have been localized in unlinked loci in large plasmids of C. perfringens. In addition, Beta2 toxin-producing C. perfringens strains were found to be associated with animal diseases such as necrotic enteritis in piglets and enterocolitis in horses.  相似文献   

16.
The objectives of this study were to isolate beneficial strains of microorganisms from the gastrointestinal tracts of healthy chickens and to screen them against Clostridium perfringens, a causative agent of necrotic enteritis in poultry. One of the bacteria isolated, a strain of Bacillus subtilis, was found to possess an anticlostridial factor that could inhibit the C. perfringens ATCC 13124 used in this study. The anticlostridial factor produced by B. subtilis PB6 was found to be fully or partially inactivated in the presence of pronase, trypsin, and pepsin. In contrast, the antimicrobial activity of the anticlostridial factor was not affected by treatment at 100 or 121°C or by treatment with any of the organic solvents used in the study. The optimum growth temperature and optimum pH for production of the anticlostridial factor were 37°C and 6.20, respectively. Using the mass spectroscopy-mass spectroscopy technique, the apparent molecular mass of the anticlostridial factor was estimated to be in the range from 960 to 983 Da. In terms of the antimicrobial spectrum, the anticlostridial factor was inhibitory toward various strains of C. perfringens implicated in necrotic enteritis in poultry, Clostridium difficile, Streptococcus pneumoniae, Campylobacter jejuni, and Campylobacter coli.  相似文献   

17.

Background

Although useful for probing bacterial pathogenesis and physiology, current random mutagenesis systems suffer limitations for studying the toxin-producing bacterium Clostridium perfringens.

Methodology/Principal Findings

An EZ-Tn5-based random mutagenesis approach was developed for use in C. perfringens. This mutagenesis system identified a new regulatory locus controlling toxin production by strain 13, a C. perfringens type A strain. The novel locus, encoding proteins with homology to the AgrB and AgrD components of the Agr quorum sensing system of Staphylococcus aureus and two hypothetical proteins, was found to regulate early production of both alpha toxin and perfringolysin O (PFO) by strain 13. PFO production by the strain 13 ΔagrB mutant could be restored by genetic complementation or by physical complementation, i.e. by co-culture of the strain 13 ΔagrB mutant with a pfoA mutant of either strain 13 or C. perfringens type C CN3685. A similar AgrB- and AgrD-encoding locus is identifiable in all sequenced C. perfringens strains, including type B, C, D, and E isolates, suggesting this regulatory locus contributes to toxin regulation by most C. perfringens strains. In strain 13, the agrB and agrD genes were found to be co-transcribed in an operon with two upstream genes encoding hypothetical proteins.

Conclusions/Significance

The new Tn5-based random mutagenesis system developed in this study is more efficient and random than previously reported C. perfringens random mutagenesis approaches. It allowed identification of a novel C. perfringens toxin regulatory locus with homology to the Agr system of S. aureus and which functions as expected of an Agr-like quorum sensing system. Since previous studies have shown that alpha toxin and perfringolysin O are responsible for strain 13-induced clostridial myonecrosis in the mouse model, the new agr regulatory locus may have importance for strain 13 virulence.  相似文献   

18.
《Anaerobe》2002,8(5):253-258
Clostridium perfringens is an important pathogen agent causing, among other diseases, enteritis in humans and enterotoxemia in domestic animals. This bacterium can produce more than 15 toxins, one of which is its enterotoxin (CPE), that causes human food poisoning. The aim of this work was (i) to determine the prevalence of C. perfringens in some non-industrial meat foods in San Luis, Argentina, (ii) to characterize the C. perfringens enterotoxigenic strains by PCR, RPLA and the slide reverse passive latex agglutination test, (iii) to type the C. perfringens strains isolated and identification by PCR and (iv) to develop a slide RPLA test. A total of 515 samples of meat food (315 fresh sausages, 100 hamburgers and 100 samples of minced meat) were studied. A 126 C. perfringens strains (24.46%) were isolated and characterized. Of these C. perfringens -positive samples, 48 contained counts higher than 2 log/g. No significant differences were observed between counts performed in iron–milk medium and tryptose–sulfite–cycloserine agar (r= 0.99). Twelve samples (9.52%) exhibited counts with MPN >5log bacteria/g. Modified Tórtora medium (Tm) with thiotone replaced by proteose peptone turned out to be the most useful medium for both sporulation and enterotoxin production. Of the 126 samples tested by PCR and RPLA, nine strains (7.14%) were enterotoxigenic. Similar results were obtained by Slide RPLA, which exhibited a sensitivity of 8 ng/mL. Of the 126 C. perfringens strains , 123 were of type A (97.20%), two were of type C (1.59%) and one of type E (0.79%). All enterotoxigenic strains were classified as type A.  相似文献   

19.
The aim of this study is to investigate the association of IκBα promoter polymorphisms with the development of Multiple Sclerosis (MS) disease in Iranian population. One hundred and fifty patients with MS along with 150 unrelated healthy controls were enrolled in this study. The IκBα ?881A/G (rs3138053), ?826C/T (rs2233406) and ?519C/T (rs2233408) polymorphisms were determined by the polymerase chain reaction/restriction fragment length polymorphism method. This study demonstrated that the genotype frequencies of IκBα ?881A/G and ?826T/T, and allele frequencies of IκBα?881G were significantly higher in patients with MS with respect to as compared to the controls. We also found that the estimated haplotype frequency of IκBα promoter ?881G–826T–519C was significantly increased in the patient with MS in comparison with that of the healthy individuals. This study reveals that polymorphisms in the IκBα promoter (?881 A/G, ?826 C/T) are strongly associated with the susceptibility of Iranian MS patients.  相似文献   

20.
Clostridium perfringens and Clostridium septicum are the most common causes of clostridial myonecrosis or gas gangrene. Although they mediate a similar disease pathology, they elaborate functionally very different α-toxins. We used a reciprocal complementation approach to assess the contribution of the primary toxin of each species to disease and found that C. perfringens α-toxin (PLC) was able to mediate the gross pathology of myonecrosis even in a C. septicum background, although it could not induce vascular leukostasis. Conversely, while C. septicum α-toxin restored some virulence to a C. perfringens plc mutant, it was less active than in its native background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号