首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.  相似文献   

2.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1), a member of the ATP-binding cassette (ABC) family of transport proteins, actively transports many cytotoxic compounds out of the cell. ABC transporters have two nucleotide-binding domains (NBD) and two transmembrane domains. The presence of the conserved "signature" sequence (LSGGQ) in each NBD is a unique feature in these transporters. The function of the signature sequences is unknown. In this study, we tested whether the signature sequences ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) in P-gp are in close proximity to the opposing Walker A consensus nucleotide-binding sequences ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1). Pairs of cysteines were introduced into a Cys-less P-gp at the signature and "Walker A" sites and the mutant P-gps were subjected to oxidative cross-linking. At 4 degrees C, when thermal motion is low, P-gp mutants (L531C(Signature)/C1074(Walker A) and C431(Walker A)/L1176C(Signature) were cross-linked. Cross-linking inhibited the drug-stimulated ATPase activities of these two mutants. Their activities were restored, however, after addition of the reducing agent, dithiothreitol. Vanadate trapping of nucleotide at the ATP-binding sites prevented cross-linking of the mutants. These results indicate that the signature sequences are adjacent to the opposing Walker A site. They likely participate in forming the ATP-binding sites and are displaced upon ATP hydrolysis. The resulting conformational change may be the signal responsible for coupling ATP hydrolysis to drug transport by inducing conformational changes in the transmembrane segments.  相似文献   

3.
As a mammalian p-glycoprotein homolog, Pdr5p is a major ATP-binding cassette transporter for cellular detoxification in the yeast Saccharomyces cerevisiae. In this study, two novel loss-of-function mutations located adjacent to the ends of the predicted transmembrane helices of Pdr5p were identified. C793F and S1230L mutations considerably impaired the transport activity of Pdr5p without affecting the ATPase activity and the expression level of the protein. Our results demonstrate that the size of residue 793 and the hydrophobicity of residue 1230 are important for Pdr5p efflux function. It reveals that amino acid residues located near the end of transmembrane helix play an important role in drug efflux of Pdr5p. Molecular docking results further suggest that these two single mutations might have disturbed interactions between the drugs and Pdr5p, preventing the drugs from approaching the intracellular or extracellular portal and subsequently from being exported by Pdr5p.  相似文献   

4.
Carrier I  Gros P 《The FEBS journal》2008,275(13):3312-3324
The invariant carboxylate residue which follows the Walker B motif (hyd(4)DE/D) in the nucleotide-binding domains (NBDs) of ATP-binding cassette transporters is thought to be involved in the hydrolysis of the gamma-phosphate of MgATP, either by activating the attacking water molecule or by promoting substrate-assisted catalysis. In Abcb1a, this invariant carboxylate residue corresponds to E552 in NBD1 and E1197 in NBD2. To further characterize the role of these residues in catalysis, we created in Abcb1a the single-site mutants E552D, N and A in NBD1, and E1197D, N and A in NBD2, as well as the double-mutant E552Q/E1197Q. In addition, we created mutants in which the Walker A K --> R mutation known to abolish ATPase activity was introduced in the non-mutant NBD of E552Q and E1197Q. ATPase activity, binding affinity and trapping properties were tested for each Abcb1a variant. The results suggest that the length of the invariant carboxylate residue is important for the catalytic activity, whereas the charge of the side chain is critical for full turnover to occur. Moreover, in the double-mutants where the K --> R mutation is introduced in the 'wild-type' NBD of the E --> Q mutants, single-site turnover is observed, especially when NBD2 can undergo gamma-P(i) cleavage. The results further support the idea that the NBDs are not symmetric and suggest that the invariant carboxylates are involved both in NBD-NBD communication and transition-state formation through orientation of the linchpin residue.  相似文献   

5.
Barnett ME  Zolkiewski M 《Biochemistry》2002,41(37):11277-11283
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates strongly aggregated proteins. The sequence of ClpB contains two ATP-binding domains, each containing Walker consensus motifs. The N- and C-terminal sequence regions of ClpB do not contain known functional motifs. In this study, we performed site-directed mutagenesis of selected charged residues within the Walker A motifs (Lys212 and Lys611) and the C-terminal region of ClpB (Asp797, Arg815, Arg819, and Glu826). We found that the mutations K212T, K611T, D797A, R815A, R819A, and E826A did not significantly affect the secondary structure of ClpB. The mutation of the N-terminal ATP-binding site (K212T), but not of the C-terminal ATP-binding site (K611T), and two mutations within the C-terminal domain (R815A and R819A) inhibited the self-association of ClpB in the absence of nucleotides. The defects in self-association of these mutants were also observed in the presence of ATP and ADP. The four mutants K212T, K611T, R815A, and R819A showed an inhibition of chaperone activity, which correlated with their low ATPase activity in the presence of casein. Our results indicate that positively charged amino acids that are located along the intersubunit interface (this includes Lys212 in the Walker A motif of the N-terminal ATP-binding domain as well as Arg815 and Arg819 in the C-terminal domain) participate in intersubunit salt bridges and stabilize the ClpB oligomer. Interestingly, we have identified a conserved residue within the C-terminal domain (Arg819) which does not participate directly in nucleotide binding but is essential for the chaperone activity of ClpB.  相似文献   

6.
The plasma membrane ATP-binding cassette (ABC) transporter, Pdr5p, mediates resistance to many different xenobiotic compounds in yeast. We have isolated several mutated forms that fail to confer resistance to cycloheximide and itraconazole. Here, we examined two variants, the expression of which was abnormally low when cells reach the stationary phase of growth. The Pdr5(1157) variant lacked the C-terminal transmembrane domain due to the presence of a nonsense mutation at codon 1158. The second variant, Pdr5(L183P), contained a Leu183Pro substitution close to the Walker A motif in the N-terminal nucleotide-binding domain. This substitution impaired UTPase activity as well as protein stability. The Pdr5(L183P) variant induced the unfolded protein response and was targeted to the proteasome for degradation. Fluorescence microscopy showed that the highly unstable Pdr5(L183P) was mislocalized to endoplasmic reticulum (ER)-associated compartments, whereas the truncated Pdr5(1157) protein was retained in the ER. When threonine 363 (located in the first nucleotide-binding domain, close to the Walker B motif) in Pdr5(L183P) was replaced with isoleucine, this double mutant conferred partial drug resistance. These results suggest that Pdr5p requires a properly folded nucleotide-binding domain for trafficking to the plasma membrane.  相似文献   

7.
Ambudkar SV  Kim IW  Xia D  Sauna ZE 《FEBS letters》2006,580(4):1049-1055
ATP-binding cassette (ABC) transporters represent one of the largest families of proteins, and transport a variety of substrates ranging from ions to amphipathic anticancer drugs. The functional unit of an ABC transporter is comprised of two transmembrane domains and two cytoplasmic ABC ATPase domains. The energy of the binding and hydrolysis of ATP is used to transport the substrates across membranes. An ABC domain consists of conserved regions, the Walker A and B motifs, the signature (or C) region and the D, H and Q loops. We recently described the A-loop (Aromatic residue interacting with the Adenine ring of ATP), a highly conserved aromatic residue approximately 25 amino acids upstream of the Walker A motif that is essential for ATP-binding. Here, we review the mutational analysis of this subdomain in human P-glycoprotein as well as homology modeling, structural and data mining studies that provide evidence for a functional role of the A-loop in ATP-binding in most members of the superfamily of ABC transporters.  相似文献   

8.
The AAA family proteins usually form a hexameric ring structure. The ATP-binding pocket, which is located at the interface of subunits in the hexamer, consists of three functionally important motifs, the Walker A and B motifs, and the second region of homology (SRH). It is well known that Walker A and B motifs mediate ATP binding and hydrolysis, respectively. Highly conserved arginine residues in the SRH have been proposed to function as arginine fingers, which interact with the gamma-phosphate of bound ATP. To elucidate the mechanism of ATP hydrolysis, we prepared several mutants of the Caenorhabditis elegans fidgetin homologue FIGL-1 carrying a mutation in each of the above-mentioned three motifs. None of the constructed mutants showed ATPase activity. All the mutants except for K362A were able to bind ATP. A decrease in the ATPase activity by mixing wild-type and each mutant subunits was caused by the formation of hetero-hexamers. Mixtures of E416A and R471A, or N461A and R471A led to the formation of hetero-hexamers with partially restored ATPase activities, providing direct, firm evidence for the intersubunit catalysis model. In addition, based on the results obtained with mixtures of K362A with wild-type or R471A subunits, we propose that a conformational change upon ATP binding is required for proper orientation of the arginine fingers, which is essential for efficient hydrolysis of ATP bound to the neighboring subunit.  相似文献   

9.
MinD is a component of the Min system involved in the spatial regulation of cell division. It is an ATPase in the MinD/ParA/Mrp deviant Walker A motif family which is within the P loop GTPase superfamily. Its ATPase activity is stimulated by MinE; however, the mechanism of this activation is unclear. MinD forms a symmetric dimer with two binding sites for MinE; however, a recent model suggested that MinE occupying one site was sufficient for ATP hydrolysis. By generating heterodimers with one binding site for MinE we show that one binding site is sufficient for stimulation of the MinD ATPase. Furthermore, comparison of structures of MinD and related proteins led us to examine the role of N45 in the switch I region. An asparagine at this position is conserved in four of the deviant Walker A motif subfamilies (MinD, chromosomal ParAs, Get3 and FleN) and we find that N45 in MinD is essential for MinE-stimulated ATPase activity and suggest that it is a key residue affected by MinE binding.  相似文献   

10.
The AAA protein Drg1 from yeast was affinity-purified, and its ATPase activity and hexamerization properties were analyzed. The same parameters were also determined for several mutant proteins and compared in light of the growth characteristics of the corresponding cells. The protein from a thermosensitive mutant exhibited reduced ATPase activity and hexamerization. These defects were not reversed by an intragenic suppressor mutation, although this allele supported growth at the nonpermissive temperature. A different set of mutants was generated by site-specific mutagenesis intended to adjust the Walker A box of the D2 domain of Drg1p to that of the D1 domain. A S562G exchange in D2 produced a nonfunctional protein that did not hexamerize but showed above-normal ATPase activity. The C561T mutant protein, on the other hand, was functional but hexamerized less readily and had reduced ATPase activity. In contrast, the C561T/S562G protein hexamerized less than wild type but had much higher ATPase activity. We distinguished strong and weak ATP-binding sites in the wild type protein but two weak sites in the C561T/S562G protein, indicating that the stronger site resides in D2. These observations are discussed in terms of the inter-relationship of ATPase activity per se, oligomeric status, and intracellular function for AAA proteins.  相似文献   

11.
The 97-kDa molecular chaperone valosin-containing protein (VCP) belongs to a highly conserved AAA family and forms a hexameric structure that is essential for its biological functions. The AAA domain contains highly conserved motifs, the Walker A, Walker B, and the second region of homology (SRH). Although Walker A and B motifs mediate ATP binding and hydrolysis, respectively, the function of the SRH in VCP is not clear. We examined the significance of the SRH in VCP, especially the conserved Arg(359) and Arg(362) in the first AAA domain, D1 and Arg(635) and Arg(638) in the second AAA domain, D2. We show that Arg(359) and Arg(362) in D1 are critical for maintaining the hexameric structure and the ability to bind the polyubiquitin chains. Although the rest of the tested SRH mutants retain the hexameric structure, all of them exhibit severely reduced ATPase activity. Tryptophan fluorescence analysis showed that all of the tested mutants can bind to ATP or ADP. Thus, the reduced ATPase activity likely results from the hampered communications among protomers during hydrolysis. Moreover, when the ATPase-defective mutant R635A or R638A is mixed with the Walker A mutant of D2, the ATPase activity is partially restored, suggesting that Arg(635) and Arg(638) can stimulate the ATPase activity of the neighboring protomer. Interestingly, mutation of Arg(359) and Arg(362) uncouples the inhibitory effect of p47, a VCP co-factor, on the ATPase activity of VCP. Therefore, the Arg residues allow D1 to take on a specific conformation that is required for substrate binding and co-factor communications. Taken together, these results demonstrate that the conserved Arg residues in the SRH of both D1 and D2 play critical roles in communicating the conformational changes required for ATP hydrolysis, and SRH in D1 also contributes to substrate binding and co-factor communications.  相似文献   

12.
Double-stranded DNA packaging in icosahedral bacteriophages is driven by an ATPase-coupled packaging machine constituted by the portal protein and two non-structural packaging/terminase proteins assembled at the unique portal vertex of the empty viral capsid. Recent studies show that the N-terminal ATPase site of bacteriophage T4 large terminase protein gp17 is critically required for DNA packaging. It is likely that this is the DNA translocating ATPase that powers directional translocation of DNA into the viral capsid. Defining this ATPase center is therefore fundamentally important to understand the mechanism of ATP-driven DNA translocation in viruses. Using combinatorial mutagenesis and biochemical approaches, we have defined the catalytic carboxylate residue that is required for ATP hydrolysis. Although the original catalytic carboxylate hypothesis suggested the presence of a catalytic glutamate between the Walker A (SRQLGKT(161-167)) and Walker B (MIYID(251-255)) motifs, none of the four candidate glutamic acid residues, E198, E208, E220 and E227, is required for function. However, the E256 residue that is immediately adjacent to the putative Walker B aspartic acid residue (D255) exhibited a phenotypic pattern that is consistent with the catalytic carboxylate function. None of the amino acid substitutions, including the highly conservative D and Q, was tolerated. Biochemical analyses showed that the purified E256V, D, and Q mutant gp17s exhibited a complete loss of gp16-stimulated ATPase activity and in vitro DNA packaging activity, whereas their ATP binding and DNA cleavage functions remained intact. The data suggest that the E256 mutants are trapped in an ATP-bound conformation and are unable to catalyze the ATP hydrolysis-transduction cycle that powers DNA translocation. Thus, this study for the first time identified and characterized a catalytic glutamate residue that is involved in the energy transduction mechanism of a viral DNA packaging machine.  相似文献   

13.
Pleotropic drug resistant protein 5 (Pdr5p) is a plasma membrane ATP-binding cassette (ABC) transporter and the major drug efflux pump in Saccharomyces cerevisiae. The Pdr5p family of fungal transporters possesses a number of structural features significantly different from other modeled or crystallized ABC transporters, which include a reverse topology, an atypical ATP-binding site, a very low sequence similarity in the transmembrane section and long linkers between domains. These features present a considerable hurdle in molecular modeling studies of these important transporters. Here, we report the creation of an atomic model of Pdr5p based on a combination of homology modeling and ab initio methods, incorporating information from consensus transmembrane segment prediction, residue lipophilicity, and sequence entropy. Reported mutations in the transmembrane substrate-binding pocket that altered drug-resistance were used to validate the model, and one mutation that changed the communication pattern between transmembrane and nucleotide-binding domains was used in model improvement. The predictive power of the model was demonstrated experimentally by the increased sensitivity of yeast mutants to clotrimazole having alanine substitutions for Thr1213 and Gln1253, which are predicted to be in the substrate-binding pocket, without reducing the amount of Pdr5p in the plasma membrane. The quality and reliability of our model are discussed in the context of various approaches used for modeling different parts of the structure.  相似文献   

14.
The yeast Pdr5p transporter is a 160 kDa protein that effluxes a large variety of xenobiotic compounds. In this study, we characterize its ATPase activity and demonstrate that it has biochemical features reminiscent of those of other ATP-binding cassette multidrug transporters: a relatively high Km for ATP (1.9 mM), inhibition by orthovanadate, and the ability to specifically bind an azidoATP analogue at the nucleotide-binding domains. Pdr5p-specific ATPase activity shows complete, concentration-dependent inhibition by clotrimazole, which is also known to be a potent transport substrate. Our results indicate, however, that this inhibition is noncompetitive and caused by the interaction of clotrimazole with the transporter at a site that is distinct from the ATP-binding domains. Curiously, Pdr5p-mediated transport of clotrimazole continues at intracellular concentrations of substrate that should eliminate all ATPase activity. Significantly, however, we observed that the Pdr5p has GTPase and UTPase activities that are relatively resistant to clotrimazole. Furthermore, the Km(GTPase) roughly matches the intracellular concentrations of the nucleotide reported for yeast. Using purified plasma membrane vesicles, we demonstrate that Pdr5p can use GTP to fuel substrate transport. We propose that Pdr5p increases its multidrug transport substrate specificity by using more than one nucleotide as an energy source.  相似文献   

15.
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.  相似文献   

16.
Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility.  相似文献   

17.
The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 Å) or long (22 Å) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity.  相似文献   

18.
The pleiotropic drug resistance protein, Pdr5p, is an ATP-binding cassette transporter of the plasma membrane of Saccharomyces cerevisiae. Overexpression of Pdr5p results in increased cell resistance to a variety of cytotoxic compounds, a phenotype reminiscent of the multiple drug resistance seen in tumor cells. Pdr5p and two other yeast ATP-binding cassette transporters, Snq2p and Yor1p, were found to be phosphorylated on serine residues in vitro. Mutations in the plasma membrane-bound casein kinase I isoforms, Yck1p and Yck2p, abolished Pdr5p phosphorylation and modified the multiple drug resistance profile. We showed Pdr5p to be ubiquitylated when overexpressed. However, instability of Pdr5p was only seen in Yck1p- and Yck2p-deficient strains, in which it was degraded in the vacuole via a Pep4p-dependent mechanism. Our results suggest that casein kinase I activity is required for membrane trafficking of Pdr5p to the cell surface. In the absence of functional Yck1p and Yck2p, Pdr5p is transported to the vacuole for degradation.  相似文献   

19.
Arabidopsis var1 and var2 mutants exhibit leaf variegation. VAR1 and VAR2 encode similar FtsH metalloproteases (FtsH5 and FtsH2, respectively). We have previously found many variegated mutants to be allelic to var2. Each mutant was shown to express a different degree of variegation, and the formation of white sectors was enhanced in severely variegated alleles when these alleles were grown at low temperature. VAR1/FtsH5 and VAR2/FtsH2 levels were mutually affected even in the weak alleles, confirming our previous observation that the two proteins form a hetero complex. In this study, the sites of the mutations in these var2 alleles were determined. We isolated eight point mutations. Five alleles resulted in an amino acid substitution. Three of the five amino acid substitutions occurred in Walker A and B motifs of the ATP-binding site, and one occurred in the central pore motif. These mutations were considered to profoundly suppress the ATPase and protease activities. In contrast, one mutation was found in a region that contained no obvious signature motifs, but a neighboring sequence, Gly–Ala–Asp, was highly conserved among the members of the AAA protein family. Site-directed mutagenesis of the corresponding residue in E. coli FtsH indeed showed that this residue is necessary for proper ATP hydrolysis and proteolysis. Based on these results, we propose that the conserved Gly–Ala–Asp motif plays an important role in FtsH activity. Thus, characterization of the var2 alleles could help to identify the physiologically important domain of FtsH.  相似文献   

20.
The Mcm2-7 complex is the eukaryotic replicative helicase, a toroidal AAA+ molecular motor that uses adenosine triphosphate (ATP) binding and hydrolysis to separate duplex DNA strands during replication. This heterohexameric helicase contains six different and essential subunits (Mcm2 through Mcm7), with the corresponding dimer interfaces forming ATPase active sites from conserved motifs of adjacent subunits. As all other known hexameric helicases are formed from six identical subunits, the function of the unique heterohexameric organization of Mcm2-7 is of particular interest. Indeed, prior work using mutations in the conserved Walker A box ATPase structural motif strongly suggests that individual ATPase active sites contribute differentially to Mcm2-7 activity. Although only a specific subset of active sites is required for helicase activity, another ATPase active site (Mcm2/5) may serve as a reversible ATP-dependent discontinuity (‘gate’) within the hexameric ring structure. This study analyzes the contribution that two other structural motifs, the Walker B box and arginine finger, make to each Mcm2-7 ATPase active site. Mutational analysis of these motifs not only confirms that Mcm ATPase active sites contribute unequally to activity but implicates the involvement of at least two additional active sites (Mcm5/3 and 6/2) in modulating the activity of the putative Mcm2/5 gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号