首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ub iquitin‐A ctivated I nteraction T raps) are E3‐ubiquitin fusion proteins and, in an E1‐ and E2‐dependent manner, the C‐terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co‐purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester‐linked lariat intermediate or through an E2 thioester intermediate, and both WT and active‐site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double‐strand break repair. Using the RNF168 UBAIT, we identify H2AZ—a histone protein involved in DNA repair—as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.  相似文献   

2.
3.
The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein–protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.  相似文献   

4.
Modification of proteins by ubiquitination plays important roles in various cellular processes. During this process, the target specificity is determined by ubiquitin ligases. Here we identify RNF220 (RING finger protein 220) as a novel ubiquitin ligase for Sin3B. As a conserved RING protein, RNF220 can bind E2 and mediate auto-ubiquitination of itself. Through a yeast two-hybrid screen, we isolated Sin3B as one of its targets, which is a scaffold protein of the Sin3/HDAC (histone deacetylase) corepressor complex. RNF220 specifically interacts with Sin3B both in vitro and in vivo. Sin3B can be regulated by the ubiquitin-proteasome system. Co-expression of RNF220 promotes the ubiquitination and proteasomal degradation of Sin3B. Taken together, these results reveal a new mechanism for regulating the Sin3/HDAC complex.  相似文献   

5.
Tolerance to replication-blocking DNA lesions is achieved by means of ubiquitylation of PCNA, the processivity clamp for replicative DNA polymerases, by components of the RAD6 pathway. In the yeast Saccharomyces cerevisiae the ubiquitin ligase (E3) responsible for polyubiquitylation of the clamp is the RING finger protein Rad5p. Interestingly, the RING finger, responsible for the protein's E3 activity, is embedded in a conserved DNA-dependent ATPase domain common to helicases and chromatin remodeling factors of the SWI/SNF family. Here, we demonstrate that the Rad5p ATPase domain provides the basis for a function of the protein in DNA double-strand break repair via a RAD52- and Ku-independent pathway mediated by the Mre11/Rad50/Xrs2 protein complex. This activity is distinct and separable from the contribution of the RING domain to ubiquitin conjugation to PCNA. Moreover, we show that the Rad5 protein physically associates with the single-stranded DNA regions at a processed double-strand break in vivo. Our observations suggest that Rad5p is a multifunctional protein that—by means of independent enzymatic activities inherent in its RING and ATPase domains—plays a modulating role in the coordination of repair events and replication fork progression in response to various different types of DNA lesions.  相似文献   

6.
Kraft E  Stone SL  Ma L  Su N  Gao Y  Lau OS  Deng XW  Callis J 《Plant physiology》2005,139(4):1597-1611
Attachment of ubiquitin to substrate proteins is catalyzed by the three enzymes E1, E2 (ubiquitin conjugating [UBC]), and E3 (ubiquitin ligase). Forty-one functional proteins with a UBC domain and active-site cysteine are predicted in the Arabidopsis (Arabidopsis thaliana) genome, which includes four that are predicted or shown to function with ubiquitin-like proteins. Only nine were previously characterized biochemically as ubiquitin E2s. We obtained soluble protein for 22 of the 28 uncharacterized UBCs after expression in Escherichia coli and demonstrated that 16 function as ubiquitin E2s. Twelve, plus three previously characterized ubiquitin E2s, were also tested for the ability to catalyze ubiquitination in vitro in the presence of one of 65 really interesting new gene (RING) E3 ligases. UBC22, UBC19-20, and UBC1-6 had variable levels of E3-independent activity. Six UBCs were inactive with all RINGs tested. Closely related UBC8, 10, 11, and 28 were active with the largest number of RING E3s and with all RING types. Expression analysis was performed to determine whether E2s or E3s were expressed in specific organs or under specific environmental conditions. Closely related E2s show unique patterns of expression and most express ubiquitously. Some RING E3s are also ubiquitously expressed; however, others show organ-specific expression. Of all the organs tested, RING mRNAs are most abundant in floral organs. This study demonstrates that E2 diversity includes examples with broad and narrow specificity toward RINGs, and that most ubiquitin E2s are broadly expressed with each having a unique spatial and developmental pattern of expression.  相似文献   

7.
8.
Herpes simplex virus type 1 immediate early protein ICP0 influences virus infection by inducing the degradation of specific cellular proteins via a mechanism requiring its RING finger and the ubiquitin-proteasome pathway. Many RING finger proteins, by virtue of their RING finger domain, interact with E2 ubiquitin-conjugating enzymes and act as a component of an E3 ubiquitin ligase. We have recently shown that ICP0 induces the accumulation of colocalizing, conjugated ubiquitin, suggesting that ICP0 can act as or contribute to an E3 ubiquitin ligase. In this report we demonstrate that the ICP0-related RING finger proteins encoded by other alphaherpesviruses also induce colocalizing, conjugated ubiquitin, thereby suggesting that they act by similar biochemical mechanisms.  相似文献   

9.
10.
Protein degradation by the ubiquitin-proteasome system is necessary for a normal cell cycle. As compared with knowledge of the mechanism in animals and yeast, that in plants is less known. Here we summarize research into the regulatory mechanism of protein degradation in the cell cycle in plants. Anaphase-promoting complex/cyclosome (APC), in the E3 family of enzymes, plays an important role in maintaining normal mitosis. APC activation and substrate specificity is determined by its activators, which can recognize the destruction box (D-box) in APC target proteins. Oryza sativa root architecture-associated I (OsRAA1) with GTP-binding activity was originally cloned from rice. Overexpression of of OsRAA1 inhibits the growth of primary roots in rice. Knockdown lines showed reduced height of seedlings because of abnormal cell division. OsRAA1 transgenic rice and fission yeast show a higher proportion of metaphase cells than that of controls, which suggests a blocked transition from metaphase to anaphase during mitosis. OsRAA1 co-localizes with spindle tubulin. It contains the D-box motif and interacts with OsRPT4 of the regulatory particle of 26S proteasome. OsRAA1 may be a cell cycle inhibitor that can be degraded by the ubiquitin-proteasome system, and its disruption is necessary for the transition from metaphase to anaphase during root growth in rice.Key words: cell cycle, APC, RAA1, rice, protein degradationProtein degradation by the ubiquitin-proteasome system is necessary for the normal cell cycle. The activation of 3 enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase), are required for the addition of ubiquitin molecules to the target protein. E1 catalyzes the formation of the thiol-ester bond between C-terminal glycine in ubiquitin and cysteine in E1, and activated ubiquitin is transferred to a cysteine in E2. With the help of an E3, ubiquitin is linked to the lysine in the target protein. Subsequent ubiquitins can be attached to the previously bound ubiquitin because of the seven lysine residues in the ubiquitin molecule. Finally, the ubiquitinated substrates are degraded by the 26S proteasome.E3 confers substrate specificity. E3 ubiquitin ligases comprise a large and diverse family of proteins or protein complexes. E3s are of two classes: homology to E6-AP carboxy terminus-containing proteins, and RING-finger domain-containing proteins. The RING-finger E3s have 4 subgroups: single subunit RING E3, VCB-Cul2 complex (VBC), Skp1/Cullin/F-box protein (SCF) and anaphase-promoting complex/cyclosome (APC/C).1 The SCF ligases regulate the transition from G1/S and G2/M, and APC is required for mitosis. Many APC substrates have been identified in animals.2 The polyubiquitinated substrates can be recognized by different ubiquitin receptors and degraded via 26S proteasome.3,4 However, little is known about APC substrates in plants.  相似文献   

11.
BackgroundThe ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3’s ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established.MethodsIn this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells.ConclusionIn silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection.Data AvailabilityThe data used to support the findings of this research are included within the article and are labeled with references.  相似文献   

12.
13.
The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo.  相似文献   

14.
15.
16.
The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.  相似文献   

17.
HLTF is highly similar in domain organisation to yeast Rad5. We identify PTIP and RPA70, both involved in DNA replication and DNA repair, as HLTF-interacting proteins although cells depleted of HLTF did not show defects in cellular responses to DNA damage. In vitro, HLTF has ATPase activity and E3 ubiquitin ligase activity with a range of E2 ubiquitin conjugating enzymes. HLTF expression is severely reduced in a range of cancer cells, and we suggest that the HLTF antibodies generated in this study could be used for cancer diagnostic purposes.  相似文献   

18.
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.  相似文献   

19.
Polycomb-repressive complex 1 (PRC1)-mediated histone ubiquitylation plays an important role in aberrant gene silencing in human cancers and is a potential target for cancer therapy. Here we show that 2-pyridine-3-yl-methylene-indan-1,3-dione (PRT4165) is a potent inhibitor of PRC1-mediated H2A ubiquitylation in vivo and in vitro. The drug also inhibits the accumulation of all detectable ubiquitin at sites of DNA double-strand breaks (DSBs), the retention of several DNA damage response proteins in foci that form around DSBs, and the repair of the DSBs. In vitro E3 ubiquitin ligase activity assays revealed that PRT4165 inhibits both RNF2 and RING 1A, which are partially redundant paralogues that together account for the E3 ubiquitin ligase activity found in PRC1 complexes, but not RNF8 nor RNF168. Because ubiquitylation is completely inhibited despite the efficient recruitment of RNF8 to DSBs, our results suggest that PRC1-mediated monoubiquitylation is required for subsequent RNF8- and/or RNF168-mediated polyubiquitylation. Our results demonstrate the unique feature of PRT4165 as a novel chromatin-remodeling compound and provide a new tool for the inhibition of ubiquitylation signaling at DNA double-strand breaks.  相似文献   

20.
During translation, stop codon read-through occasionally happens when the stop codon is misread, skipped, or mutated, resulting in the production of aberrant proteins with C-terminal extension. These extended proteins are potentially deleterious, but their regulation is poorly understood. Here we show in vitro and in vivo evidence that mouse cFLIP-L with a 46-amino acid extension encoded by a read-through mutant gene is rapidly degraded by the ubiquitin-proteasome system, causing hepatocyte apoptosis during embryogenesis. The extended peptide interacts with an E3 ubiquitin ligase, TRIM21, to induce ubiquitylation of the mutant protein. In humans, 20 read-through mutations are related to hereditary disorders, and extended peptides found in human PNPO and HSD3B2 similarly destabilize these proteins, involving TRIM21 for PNPO degradation. Our findings indicate that degradation of aberrant proteins with C-terminal extension encoded by read-through mutant genes is a mechanism for loss of function resulting in hereditary disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号