首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions.  相似文献   

2.
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection in infants and young children globally and is responsible for hospitalization and mortality in the elderly population. Virus-induced airway epithelial barrier damage is a critical step during RSV infection, and emerging studies suggest that RSV disrupts the tight junctions (TJs) and adherens junctions (AJs) between epithelial cells, increasing the permeability of the airway epithelial barrier. The lack of commercially available vaccines and effective antiviral drugs for RSV emphasizes the need for new management strategies. Vitamin D3 is a promising intervention for viral infection due to its critical role in modulating innate immune responses. However, there is limited evidence on the effect of vitamin D3 on RSV pathogenies. Here, we investigated the impact of vitamin D3 on RSV-induced epithelial barrier dysfunction and the underlying mechanisms. We found that pre-incubation with 1,25(OH)2D3, the active form of vitamin D3, alleviated RSV-induced epithelial barrier disruption in a dose-dependent manner without affecting viability in 16HBE cells. 1,25(OH)2D3 induced minor changes in the protein expression level of TJ/AJ proteins in RSV-infected cells. We observed increased CREB phosphorylation at Ser133 during 1,25(OH)2D3 exposure, indicating that vitamin D3 triggered protein kinase A (PKA) activity in 16HBE. PKA inhibitors modified the restoration of barrier function by 1,25(OH)2D3 in RSV-infected cells, implying that PKA signaling is responsible for the protective effects of vitamin D3 against RSV-induced barrier dysfunction in airway epithelial cells. Our findings suggest vitamin D3 as a prophylactic intervention to protect the respiratory epithelium during RSV infections.  相似文献   

3.
Disassembly of the epithelial apical junctional complex (AJC), composed of the tight junction (TJ) and adherens junction (AJ), is important for normal tissue remodeling and pathogen-induced disruption of epithelial barriers. Using a calcium depletion model in T84 epithelial cells, we previously found that disassembly of the AJC results in endocytosis of AJ/TJ proteins. In the present study, we investigated the role of the actin cytoskeleton in disassembly and internalization of the AJC. Calcium depletion induced reorganization of apical F-actin into contractile rings. Internalized AJ/TJ proteins colocalized with these rings. Both depolymerization and stabilization of F-actin inhibited ring formation and disassembly of the AJC, suggesting a role for actin filament turnover. Actin reorganization was accompanied by activation (dephosphorylation) of cofilin-1 and its translocation to the F-actin rings. In addition, Arp3 and cortactin colocalized with these rings. F-actin reorganization and disassembly of the AJC were blocked by blebbistatin, an inhibitor of nonmuscle myosin II. Myosin IIA was expressed in T84 cells and colocalized with F-actin rings. We conclude that disassembly of the AJC in calcium-depleted cells is driven by reorganization of apical F-actin. Mechanisms of such reorganization involve cofilin-1-dependent depolymerization and Arp2/3-assisted repolymerization of actin filaments as well as myosin IIA-mediated contraction.  相似文献   

4.
Tight junctions (TJ) and adherens junctions (AJ) regulate cell-cell adhesion and barrier function of simple polarized epithelia. These junctions are positioned in the apical end of the lateral plasma membrane and form the so-called apical junctional complex (AJC). Although initially seen as purely structural features, the AJC is now known to play important roles in cell differentiation and proliferation. The AJC is a highly dynamic entity, undergoing rapid remodeling during normal epithelial morphogenesis and under pathologic conditions. There is growing evidence that remodeling of the AJC is mediated by internalization of junctional proteins. This review summarizes what is known about endocytic pathways, intracellular destinations and signaling cascades involved in internalization of AJC proteins. Potential biological roles for AJC endocytosis in maintaining functional apical junctions, reversible opening of epithelial barrier and disruption of intercellular adhesion are also discussed.  相似文献   

5.

Background  

Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion.  相似文献   

6.
7.
The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis.  相似文献   

8.
It is well known that inflammatory conditions of the intestinal mucosa result in compromised barrier function. Inflammation is characterized by an influx into the mucosa of immune cells that influence epithelial function by releasing proinflammatory cytokines such as IFN-gamma and TNF-alpha. Mucosal barrier function is regulated by the epithelial apical junctional complex (AJC) consisting of the tight junction and the adherens junction. Since the AJC regulates barrier function, we analyzed the influence of IFN-gamma and TNF-alpha on its structure/function and determined the contribution of apoptosis to this process using a model intestinal epithelial cell line, T84, and IFN-gamma and TNF-alpha. AJC structure/function was analyzed by confocal microscopy, biochemical analysis, and physiologic measurement of epithelial gate/fence function. Apoptosis was monitored by determining cytokeratin 18 cleavage and caspase-3 activation. IFN-gamma induced time-dependent disruptions in epithelial gate function that were potentiated by coincubation with TNF-alpha. Tight junction fence function was somewhat disrupted. Cytokine treatment was associated with internalization of AJC transmembrane proteins, junction adhesion molecule 1, occludin, and claudin-1/4 with minimal effects on the cytoplasmic plaque protein zonula occludens 1. Detergent solubility profiles of junction adhesion molecule 1 and E-cadherin and their affiliation with "raft-like" membrane microdomains were modified by these cytokines. Inhibition of cytokine-induced apoptosis did not block induced permeability defects; further emphasizing their primary influence on the epithelial AJC structure and barrier function. Our findings for the first time clearly separate the proapoptotic effects of IFN-gamma and TNF-alpha from their abilities to disrupt barrier function.  相似文献   

9.
Airway damage and hyperreactivity induced during respiratory syncytial virus (RSV) infection can have a prolonged effect in infants and young children. These infections can alter the long-term function of the lung and may lead to severe asthma-like responses. In these studies, the role of IL-13 in inducing and maintaining a prolonged airway hyperreactivity response was examined using a mouse model of primary RSV infection. Using this model, there was evidence of significant airway epithelial cell damage and sloughing, along with mucus production. The airway hyperreactivity response was significantly increased by 8 days postinfection, peaked during days 10-12, and began to resolve by day 14. When the local production of Th1- and Th2-associated cytokines was examined, there was a significant increase, primarily in IL-13, as the viral response progressed. Treatment of RSV-infected mice with anti-IL-13 substantially inhibited airway hyperreactivity. Anti-IL-4 treatment had no effect on the RSV-induced responses. Interestingly, when IL-13 was neutralized, an early increase in IL-12 production was observed within the lungs, as was a significantly lower level of viral Ags, suggesting that IL-13 may be regulating an important antiviral pathway. The examination of RSV-induced airway hyperreactivity in STAT6(-/-) mice demonstrated a significant attenuation of the response, similar to the anti-IL-13 treatment. In addition, STAT6(-/-) mice had a significant alteration of mucus-producing cells in the airway. Altogether, these studies suggest that a primary factor leading to chronic RSV-induced airway dysfunction may be the inappropriate production of IL-13.  相似文献   

10.
Apical junctional complex (AJC) plays a vital role in regulation of epithelial barrier function. Disassembly of the AJC is observed in diverse physiological and pathological states; however, mechanisms governing this process are not well understood. We previously reported that the AJC disassembly is driven by the formation of apical contractile acto-myosin rings. In the present study, we analyzed the signaling pathways regulating acto-myosin-dependent disruption of AJC by using a model of extracellular calcium depletion. Pharmacological inhibition analysis revealed a critical role of Rho-associated kinase (ROCK) in AJC disassembly in calcium-depleted epithelial cells. Furthermore, small interfering RNA (siRNA)-mediated knockdown of ROCK-II, but not ROCK-I, attenuated the disruption of the AJC. Interestingly, AJC disassembly was not dependent on myosin light chain kinase and myosin phosphatase. Calcium depletion resulted in activation of Rho GTPase and transient colocalization of Rho with internalized AJC proteins. Pharmacological inhibition of Rho prevented AJC disassembly. Additionally, Rho guanine nucleotide exchange factor (GEF)-H1 translocated to contractile F-actin rings after calcium depletion, and siRNA-mediated depletion of GEF-H1 inhibited AJC disassembly. Thus, our findings demonstrate a central role of the GEF-H1/Rho/ROCK-II signaling pathway in the disassembly of AJC in epithelial cells.  相似文献   

11.
12.
13.
The apical and basolateral surfaces of airway epithelial cells demonstrate directional responses to pathogen exposure in vivo. Thus, ideal in vitro models for examining cellular responses to respiratory pathogens polarize, forming apical and basolateral surfaces. One such model is differentiated normal human bronchial epithelial cells (NHBE). However, this system requires lung tissue samples, expertise isolating and culturing epithelial cells from tissue, and time to generate an air-liquid interface culture.Calu-3 cells, derived from a human bronchial adenocarcinoma, are an alternative model for examining the response of proximal airway epithelial cells to respiratory insult1, pharmacological compounds2-6, and bacterial7-9 and viral pathogens, including influenza virus, rhinovirus and severe acute respiratory syndrome - associated coronavirus10-14. Recently, we demonstrated that Calu-3 cells are susceptible to respiratory syncytial virus (RSV) infection in a manner consistent with NHBE15,16 . Here, we detail the establishment of a polarized, liquid-covered culture (LCC) of Calu-3 cells, focusing on the technical details of growing and culturing Calu-3 cells, maintaining cells that have been cultured into LCC, and we present the method for performing respiratory virus infection of polarized Calu-3 cells.To consistently obtain polarized Calu-3 LCC, Calu-3 cells must be carefully subcultured before culturing in Transwell inserts. Calu-3 monolayer cultures should remain below 90% confluence, should be subcultured fewer than 10 times from frozen stock, and should regularly be supplied with fresh medium. Once cultured in Transwells, Calu-3 LCC must be handled with care. Irregular media changes and mechanical or physical disruption of the cell layers or plates negatively impact polarization for several hours or days. Polarization is monitored by evaluating trans-epithelial electrical resistance (TEER) and is verified by evaluating the passive equilibration of sodium fluorescein between the apical and basolateral compartments17,18 . Once TEER plateaus at or above 1,000 Ω×cm2, Calu-3 LCC are ready to use to examine cellular responses to respiratory pathogens.  相似文献   

14.
Respiratory syncytial virus (RSV) is an important respiratory pathogen that preferentially infects epithelial cells in the airway and causes a local inflammatory response. Very little is known about the second messenger pathways involved in this response. To characterize some of the acute response pathways involved in RSV infection, we used cultured human epithelial cells (A549) and optimal tissue culture-infective doses (TCID(50)) of RSV. We have previously shown that RSV-induced IL-8 release is linked to activation of the extracellular signal-related kinase (ERK) mitogen-activated protein kinase pathway. In this study, we evaluated the upstream events involved in ERK activation by RSV. RSV activated ERK at two time points, an early time point consistent with viral binding and a later sustained activation consistent with viral replication. We next evaluated the role of protein kinase C (PKC) isoforms in RSV-induced ERK kinase activity. We found that A549 cells contain the Ca(2+)-dependent isoforms alpha and beta1, and the Ca(2+)-independent isoforms delta, epsilon, eta, mu, theta, and zeta. Western analysis showed that RSV caused no change in the amounts of these isoforms. However, kinase activity assays demonstrated activation of isoform zeta within 10 min of infection, followed by a sustained activation of isoforms beta1, delta, epsilon, and mu 24-48 h postinfection. A cell-permeable peptide inhibitor specific for the zeta isoform decreased early ERK kinase activation by RSV. Down-regulation of the other PKC isoforms with PMA blocked the late sustained activation of ERK by RSV. These studies suggest that RSV activates multiple PKC isoforms with subsequent downstream activation of ERK kinase.  相似文献   

15.
Gene therapy for cystic fibrosis (CF) lung disease requires efficient gene transfer to airway epithelial cells after intralumenal delivery. Most gene transfer vectors so far tested have not provided the efficiency required. Although human respiratory syncytial virus (RSV), a common respiratory virus, is known to infect the respiratory epithelium, the mechanism of infection and the epithelial cell type targeted by RSV have not been determined. We have utilized human primary airway epithelial cell cultures that generate a well-differentiated pseudostratified mucociliary epithelium to investigate whether RSV infects airway epithelium via the lumenal (apical) surface. A recombinant RSV expressing green fluorescent protein (rgRSV) infected epithelial cell cultures with high gene transfer efficiency when applied to the apical surface but not after basolateral inoculation. Analyses of the cell types infected by RSV revealed that lumenal columnar cells, specifically ciliated epithelial cells, were targeted by RSV and that cultures became susceptible to infection as they differentiated into a ciliated phenotype. In addition to infection of ciliated cells via the apical membrane, RSV was shed exclusively from the apical surface and spread to neighboring ciliated cells by the motion of the cilial beat. Gross histological examination of cultures infected with RSV revealed no evidence of obvious cytopathology, suggesting that RSV infection in the absence of an immune response can be tolerated for >3 months. Therefore, rgRSV efficiently transduced the airway epithelium via the lumenal surface and specifically targeted ciliated airway epithelial cells. Since rgRSV appears to breach the lumenal barriers encountered by other gene transfer vectors in the airway, this virus may be a good candidate for the development of a gene transfer vector for CF lung disease.  相似文献   

16.
We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells.These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.  相似文献   

17.
Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9 -/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9 -/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.  相似文献   

18.
Numb is highly expressed throughout the crypt-villus axis of intestinal mucosa and functions as cell fate determinant and integrator of cell-to-cell adhesion. Increased paracellular permeability of intestinal epithelial cells is associated with the epithelial barrier dysfunction of inflammatory bowel diseases (IBDs). The apical junctional complex (AJC) assembly and myosin light chain (MLC) phosphorylation regulate adherens junctions (AJ) and tight junctions (TJ). We determined whether and how Numb modulate the paracellular permeability of intestinal epithelial cells. Caco-2 intestinal epithelial cells and their Numb-interfered counterparts were used in the study for physiological, morphological and biological analyses. Numb, expressed in intestinal epithelial cells and located at the plasma membrane of Caco-2 cells in a basolateral to apical distribution, increased in the intestinal epithelial cells with the formation of the intestinal epithelial barrier. Numb expression decreased and accumulated in the cytoplasm of intestinal epithelial cells in a DSS-induced colitis mouse model. Numb co-localized with E-cadherin, ZO-1 and Par3 at the plasma membrane and interacted with E-cadherin and Par3. Knockdown of Numb in Caco-2 cells altered the F-actin structure during the Ca2+ switch assay, enhanced TNFα-/INF-γ-induced intestinal epithelial barrier dysfunction and TJ destruction, and increased the Claudin-2 protein level. Immunofluorescence experiments revealed that NMIIA and F-actin co-localized at the cell surface of Caco-2 cells. Numb knockdown in Caco-2 cells increased F-actin contraction and the abundance of phosphorylated MLC. Numb modulated the intestinal epithelial barrier in a Notch signaling-independent manner. These findings suggest that Numb modulates the paracellular permeability by affecting AJC assembly and MLC phosphorylation.  相似文献   

19.
High concentrations of manufactured carbon nanoparticles (CNP) are known to cause oxidative stress, inflammatory responses and granuloma formation in respiratory epithelia. To examine the effects of lower, more physiologically relevant concentrations, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in transepithelial permeability and cellular function of airway epithelia after exposure to environmentally realistic concentrations of carbon nanoparticles. Three common carbon nanoparticles, fullerenes, single- and multi-wall carbon nanotubes (SWCNT, MWCNT) were used in these experiments. Electrophysiological measurements were performed to assay transepithelial electrical resistance (TEER) and epinephrine-stimulated chloride (Cl(-)) ion secretion of epithelial cell monolayers that had been exposed to nanoparticles for three different times (1 h, 24 h and 48 h) and over a 7 log unit range of concentrations. Fullerenes did not have any effect on the TEER or stimulated ion transport. However, the carbon nanotubes (CNT) significantly decreased TEER and inhibited epinephrine-stimulated Cl(-) secretion. The changes were time dependent and at more chronic exposures caused functional effects which were evident at concentrations substantially lower than have been previously examined. The functional changes manifested in response to physiologically relevant exposures would inhibit mucociliary clearance mechanisms and compromise the barrier function of airway epithelia.  相似文献   

20.

Background

Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.

Methods

Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.

Results

RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.

Conclusions

RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号