首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and PODOVIRIDAE:  相似文献   

3.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and Podoviridae.  相似文献   

4.
Erwinia amylovora Infection of Hawthorn Blossom   总被引:1,自引:0,他引:1  
Stamens of freshly opened flowers of hawthorn were inoculated with E;. amylovora and the development of blossom infection was monitored by viable bacterial counts and light and electron microscopy. Some bacterial multiplication occurred on the anther surface, over the dehiscence zone and over the junctions ot the anther-wall cells. bacteria invaded the anther loculc, via the ruptured dehiscence zone, and possibly also vid the stomata surrounding the filament insertion. bacteria within the locule multiplied rapidk with estimated doubling-times which were longer than those derived from in vitro data. Pollen grains Irom infected anthers were found to be heavily eontaminated with bacteria. The invasion of anther tissue, with the production of contaminated pollen, may be important epidemiologieally both as a phase of rapid bacterial multiplication and in the insect-mediated spread of this disease.  相似文献   

5.
Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.  相似文献   

6.
Capsulation and virulence in Erwinia amylovora   总被引:3,自引:0,他引:3  
Evidence is presented that capsulation may be one virulence determinant for Erwinia amylovora, the fireblight pathogen. When 15 virulent and seven avirulent strains were grown on a medium containing asparagine as the only source of carbon and nitrogen, or yeast peptone agar, or on a sugar medium containing an inorganic source of nitrogen, capsule production and virulence were not correlated. However, if a sugar or sugar alcohol was added to the asparagine medium or to yeast peptone agar all the virulent strains produced some or many capsulated cells whereas six of the avirulent ones did not. Capsules were also produced by all the virulent strains during infection. The existence of a seventh avirulent strain which was capsulated on all media except unsupplemented asparagine agar, suggested that capsule production was not the only virulence determinant.  相似文献   

7.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages phiEa1 and phiEa7 and 3 novel phages named phiEa100, phiEa125, and phiEa116C, were identified based on differences in genome size and restriction fragment pattern. phiEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages phiEa100, phiEa7, and phiEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. phiEa116C contained an approximately 75-kb genome. phiEa1, phiEa7, phiEa100, phiEa125, and phiEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. phiEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 10(5) CFU.  相似文献   

8.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages Ea1 and Ea7 and 3 novel phages named Ea100, Ea125, and Ea116C, were identified based on differences in genome size and restriction fragment pattern. Ea1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages Ea100, Ea7, and Ea125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. Ea116C contained an approximately 75-kb genome. Ea1, Ea7, Ea100, Ea125, and Ea116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. Ea116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 105 CFU.  相似文献   

9.
Gene Transmission Among Strains of Erwinia amylovora   总被引:10,自引:6,他引:4       下载免费PDF全文
Stable donor strains of Erwinia amylovora were obtained from strain EA178R(1) (harboring an Escherichia coli F'lac) by selection for clones resistant to curing by acridine orange. These donor strains (EA178R(1)-99 and EA178R(1)-111) transfer chromosomal markers (arg, cys, gua, ilv, met, pro, ser, trp); the frequency of the appearance of recombinants prototrophic for Cys, Gua, Met, Ser, and Trp is highest (> 10(-5)), followed by recombinants prototrophic for Arg, Ilv, and Pro (10(-7) to 10(-5)). The results of interrupted matings, as well as the frequency of transmission of various markers, suggest that cys is transferred as an early marker by both donor strains. The Hfr state of these donor strains is rather likely on the basis of the following observations. The donor strains exhibit a relatively efficient and possibly oriented chromosome transfer; the Lac(+) character is not cured by acridine orange in these donor strains; and these donor strains do not transfer F.  相似文献   

10.
The small basic histone-like protein H-NS is known for bacteria to attenuate virulence of several animal pathogens. An hns homologue from E. amylovora was identified by complementing an E. coli hns-mutant strain with a cosmid library from E. amylovora. A 1.6 kb EcoRI-fragment complemented the mucoid phenotype and repressed the ss-glucosidase activity of E. coli PD32. The open reading frame encoding an H-NS-like protein of 134 amino acid was later shown to be located on plasmid pEA29 (McGhee and Jones 2000). A chromosomal hns gene was amplified with PCR consensus primers and localized near galU of E. amylovora. E. amylovora mutants were created by insertion of a resistance cassette, and the intact gene was inserted into a high copy number plasmid for constitutive expression. Purified chromosomal H-NS protein preferentially bound to a DNA fragment from the lsc region and bending was predicted for an adjacent fragment with the rlsB-promoter. Levan production was significantly increased by hns mutations. Synthesis of the capsular exopolysaccharide amylovoran and of levan were reduced, when hns from the E. amylovora plasmid was overexpressed. A mutation in chromosomal hns of E. amylovora increased amylovoran synthesis, and both mutations retarded symptom formation on immature pears.  相似文献   

11.
Thin sectioned cells of Erwinia amylovora revealed two electron-dense layers in their walls when fixed at 24 to 27 C and three when fixed at 4 C.  相似文献   

12.
13.
Fifty-one strains of Erwinia amylovora isolated from nine host plants in Bulgaria were characterized phenotypically and identified by the API 20E and BIOLOG system. The identification was confirmed by PCR amplification of a specific region of the plasmid pEA29 and the genome ams region. The phenotypic diversity of the strains was studied on the basis of their API 20E and BIOLOG metabolic profiles, as well as of their SDS-PAGE protein profile. Metabolic diversity among the strains was established, but no connection with the origin of the strains was revealed. The Bulgarian strains showed API 20E metabolic profiles not found in previous studies of E. amylovora. The strains formed a homogenous group on the basis of their protein profiles. All the strains were sensitive to the antibiotics streptomycin, tetracycline and oxytetracycline. This study was an initial step towards an investigation of the diversity and evolution in the Bulgarian population of E. amylovora, and it was the first characterization of E. amylovora strains isolated from different host plants in the period 1995-2005 in Bulgaria.  相似文献   

14.
Erwinia amylovora: the molecular basis of fireblight disease   总被引:1,自引:0,他引:1  
Taxonomy: Bacteria; Proteobacteria; γ subdivision; order Enterobacteriales; family Enterobacteriaceae; genus Erwinia .
Microbiological properties: Gram-negative, motile rods.
Related species: E. carotovora (soft-rot diseases) , E. chrysanthemi (soft-rot diseases) , E. (Pantoea) stewartii (Stewart's wilt of corn) , E. (Pantoea) herbicola (epiphyte).
Host range: Affects rosaceous plants, primarily members of the Pomoideae . Economically important hosts are apple and pear. The commercial implications of fireblight outbreaks are aggravated by the limited effectiveness of current control measures.
Disease symptoms: E. amylovora infection is characterized by water soaking of infected tissue, followed by wilting and tissue necrosis. Necrosis gives tissue a scorched, blackened appearance, giving rise to the name fireblight. Symptoms are often localized to blossom bracts or young shoots but, in highly susceptible hosts, can spread systemically resulting in death of the entire tree. Infections can vary in severity depending on climatic conditions and host susceptibility.
Useful web site: http://www.agric.gov.ab.ca  相似文献   

15.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA(Glu) gene and two with tRNA(Ile) and tRNA(Ala) genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA(Glu)-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA(Glu) operons and two tRNA(Ile) and tRNA(Ala) operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.  相似文献   

16.
Nine strains of Erwinia amylovora were isolated from new host plants in Bulgaria--chokeberry and strawberry. The strains were characterized morphologically and biochemically using the API 20E and BIOLOG system. It was established that they showed three different API 20E metabolic profiles, not found by previous studies of E. amylovora. All strains were identified as E. amylovora due to their metabolic fingerprint patterns obtained by the BIOLOG system. The identification was confirmed by PCR amplification of a specific region of plasmid pEA29 and genome ams-region. This study is the first characterization and identification of E. amylovora strains isolated from chokeberry and strawberry by the API 20E and BIOLOG system and by polymerase chain reaction.  相似文献   

17.
18.
Structure of the sidechain of lipopolysaccharide from Erwinia amylovora T   总被引:1,自引:0,他引:1  
The sidechain of lipopolysaccharide from Erwinia amylovora T was composed of D-fucose, D-galactose and D-glucose in equimolar proportions. Using NMR spectroscopy, methylation analysis, mass spectrometry, Smith degradation and optical rotation data, the repeat unit was shown to have the following most probable structure: (formula; see text)  相似文献   

19.
Fine Structure of Extracellular Polysaccharide of Erwinia amylovora   总被引:4,自引:2,他引:2       下载免费PDF全文
Virulent E9 and avirulent E8 strains of Erwinia amylovora were shown by means of light, transmission, and scanning microscopy to be, respectively, encapsulated and unencapsulated. Difficulty was encountered in stabilizing the fibrillar-appearing capsular extracellular polysaccharide. We suggest that the ephemeral nature of extracellular polysaccharide is due to the collapse of its extended structure upon dehydration. This occurs when bacteria are prepared for either transmission or scanning electron microscopy. The electron micrographs support our previous biochemical and immunological studies contending that the capsule is composed of tightly bound and loosely held components. The preparation of bacteria in freeze-dried colonies has permitted us to observe and explain the fluidity of the encapsulated strain. We suggest that this fluidity is a reflection of the loosely held extracellular polysaccharide or slime.  相似文献   

20.
To understand the toxicity of copper salts on Erwinia amylovora, which are used in the control of fire blight, bacterial growth and cell metabolism was assayed with copper sulphate in the presence or absence of complex-forming compounds such as various amino acids or citrate. In minimal medium without amino acids copper sulphate strongly interfered with the growth of E. amylovora. A concentration of 15 μm CuSO4 resulted in about 50% growth inhibition. In contrast to a strong effect of streptomycin, copper ions barely killed the cells when incubated in minimal medium for 1 h. The addition of 4 g asparagine per litre relieved a‘bacteriostatic’effect of copper ions and allowed growth of the bacteria at 2 mm CuSO4. Other amino acids had a similar effect in the protection of E. amylovora against copper ions. This was in contrast to glycine betain, which was unable to suppress growth inhibition by CuSO4. Presumably, the free ammonium groups of amino acids participated in the protective effect. The addition of citrate, exceeding the amount of copper-ions, was also protective. Bioluminescence of E. amylovora cells was expressed via a constitutive promoter from the lux-operon of Vibrio fischeri. The light emission is dependent on active cell metabolism. In a novel approach to determine the immediate response of E. amylovora after the addition of copper sulphate, the change of bioluminescence was determined. Addition of copper ions to MM3 medium strongly affected the bioluminescence, but no change in light production was noticed, when citrate or asparagine were present in addition to copper sulphate. A decrease of bioluminescence to 50% was observed for 50 μm CuSO4 in the absence of amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号