首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.  相似文献   

2.
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.  相似文献   

3.
4.

Background

Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT) “master genes”. EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question.

Methodology/Principal Findings

Using a Slug–lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10–20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres.

Conclusions/Significance

We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and provide physiological relevance to broadening EMT pathways.  相似文献   

5.
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.  相似文献   

6.
The recent identification of mouse mammary stem cells (MaSCs) and progenitor subpopulations has enhanced the prospect of investigating the genetic control of their lineage specification and differentiation. Here we have explored the role of the Notch pathway within the mammary epithelial hierarchy. We show that knockdown of the canonical Notch effector Cbf-1 in the MaSC-enriched population results in increased stem cell activity in vivo as well as the formation of aberrant end buds, implying a role for endogenous Notch signaling in restricting MaSC expansion. Conversely, Notch was found to be preferentially activated in the ductal luminal epithelium in vivo and promoted commitment of MaSCs exclusively along the luminal lineage. Notably, constitutive Notch signaling specifically targeted luminal progenitor cells for expansion, leading to hyperplasia and tumorigenesis. These findings reveal key roles for Notch signaling in MaSCs and luminal cell commitment and further suggest that inappropriate Notch activation promotes the self-renewal and transformation of luminal progenitor cells.  相似文献   

7.
Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.  相似文献   

8.
9.
10.
Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D β-geo (CDβgeo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDβgeo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG−/− mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.  相似文献   

11.
12.
13.
Mammary gland development occurs through distinctive stages throughout embryonic and pubertal development and reproductive life. At each stage, different signals are required to induce changes in both the epithelium and the surrounding mesenchyme/stroma. Recent studies have provided new insights into the origin, specification and fate of mammary stem and progenitor cells and into how the differentiated lineages that comprise the functional mammary gland are determined. The development of new tools and culture techniques has also enabled the factors that influence branching morphogenesis in the embryonic and pubertal gland to be identified. A surprising recent discovery has been that mammary epithelial cells commit to differentiated lineages using the same signalling pathways that regulate lineage determination in T helper cells.  相似文献   

14.
15.
Airway basal cells (BC) function as stem/progenitor cells capable of differentiating into the luminal ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. The objective of this study was to define the role of Notch signaling in regulating human airway BC differentiation into a pseudostratified mucociliated epithelium. Notch inhibition with γ-secretase inhibitors demonstrated Notch activation is essential for BC differentiation into secretory and ciliated cells, but more so for the secretory lineage. Sustained cell autonomous ligand independent Notch activation via lentivirus expression of the intracellular domain of each Notch receptor (NICD1-4) demonstrated that the NOTCH2 and 4 pathways have little effect on BC differentiation into secretory and ciliated cells, while activation of the NOTCH1 or 3 pathways has a major influence, with persistent expression of NICD1 or 3 resulting in a skewing toward secretory cell differentiation with a parallel decrease in ciliated cell differentiation. These observations provide insights into the control of the balance of BC differentiation into the secretory vs ciliated cell lineage, a balance that is critical for maintaining the normal function of the airway epithelium in barrier defense against the inhaled environment.  相似文献   

16.
17.
18.

Background

Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, “normal-like”, and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity.

Methodology/Principal Findings

A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and “normal-like” tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice.

Conclusions/Significance

Luminal A and “normal-like” breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.  相似文献   

19.
We previously reported that STAT1 expression is frequently abrogated in human estrogen receptor-α-positive (ERα+) breast cancers and mice lacking STAT1 spontaneously develop ERα+ mammary tumors. However, the precise mechanism by which STAT1 suppresses mammary gland tumorigenesis has not been fully elucidated. Here we show that STAT1-deficient mammary epithelial cells (MECs) display persistent prolactin receptor (PrlR) signaling, resulting in activation of JAK2, STAT3 and STAT5A/5B, expansion of CD61+ luminal progenitor cells and development of ERα+ mammary tumors. A failure to upregulate SOCS1, a STAT1-induced inhibitor of JAK2, leads to unopposed oncogenic PrlR signaling in STAT1−/− MECs. Prophylactic use of a pharmacological JAK2 inhibitor restrains the proportion of luminal progenitors and prevents disease induction. Systemic inhibition of activated JAK2 induces tumor cell death and produces therapeutic regression of pre-existing endocrine-sensitive and refractory mammary tumors. Thus, STAT1 suppresses tumor formation in mammary glands by preventing the natural developmental function of a growth factor signaling pathway from becoming pro-oncogenic. In addition, targeted inhibition of JAK2 may have significant therapeutic potential in controlling ERα+ breast cancer in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号