首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting.  相似文献   

3.
African trypanosomes have a tightly coordinated cell cycle to effect efficient segregation of their single organelles, the nucleus, flagellum, and kinetoplast. To investigate cell cycle control in trypanosomes, a mitotic cyclin gene (CYC6) has been identified in Trypanosoma brucei. We show that CYC6 forms an active kinase complex with CRK3, the trypanosome CDK1 homologue, in vivo. Using RNA interference, we demonstrate that absence of CYC6 mRNA results in a mitotic block and growth arrest in both the insect procyclic and mammalian bloodstream forms. In the procyclic form, CYC6 RNA interference generates anucleate cells with a single kinetoplast, whereas in bloodstream form trypanosomes, cells with one nucleus and multiple kinetoplasts are observed. Fluorescence-activated cell sorting analysis shows that bloodstream but not procyclic trypanosomes are able to reinitiate nuclear S phase in the absence of mitosis. Taken together, these data show that procyclic trypanosomes can undergo cytokinesis without completion of mitosis, whereas a mitotic block in bloodstream form trypanosomes inhibits cytokinesis but not kinetoplast replication and segregation nor an additional round of nuclear DNA synthesis. This indicates that there are fundamental differences in cell cycle controls between life cycle forms of T. brucei and that key cell cycle checkpoints present in higher eukaryotes are absent from trypanosomes.  相似文献   

4.
Ying Wei  Ziyin Li 《Eukaryotic cell》2014,13(1):110-118
Mitogen-activated protein kinase (MAPK) modules are evolutionarily conserved signaling cascades that function in response to the environment and play crucial roles in intracellular signal transduction in eukaryotes. The involvement of a MAP kinase in regulating cytokinesis in yeast, animals, and plants has been reported, but the requirement for a MAP kinase for cytokinesis in the early-branching protozoa is not documented. Here, we show that a MAP kinase homolog (TbMAPK6) from Trypanosoma brucei plays distinct roles in cytokinesis in two life cycle forms of T. brucei. TbMAPK6 is distributed throughout the cytosol in the procyclic form but is localized in both the cytosol and the nucleus in the bloodstream form. RNA interference (RNAi) of TbMAPK6 results in moderate growth inhibition in the procyclic form but severe growth defects and rapid cell death in the bloodstream form. Moreover, TbMAPK6 appears to be implicated in furrow ingression and cytokinesis completion in the procyclic form but is essential for cytokinesis initiation in the bloodstream form. Despite the distinct defects in cytokinesis in the two forms, RNAi of TbMAPK6 also caused defective basal body duplication/segregation in a small cell population in both life cycle forms. Altogether, our results demonstrate the involvement of the TbMAPK6-mediated pathway in regulating cytokinesis in trypanosomes and suggest distinct roles of TbMAPK6 in cytokinesis between different life cycle stages of T. brucei.  相似文献   

5.
The nature of surface antigens of culture epimastigote and bloodstream trypomastigote forms of Trypanosoma cruzi was investigated by light and electron microscopy using indirect immunofluorescence and peroxidase labeling techniques and antisera against unique, common, and contaminant antigens. A specific antigen, identified by monospecific rabbit antiserum (anti-component 5 antiserum), is the major constituent of the cell surface and flagellar membrane of both the culture epimastigote and bloodstream trypomastigote forms. Antigens of heterologous stercorarian trypanosomes (Trypanosoma rangeli) and of culture medium proteins could not be detected on the cell surface of culture epimastigote forms and bloodstream trypomastigote forms.  相似文献   

6.
The salivarian trypanosome Trypanosoma brucei infects mammals and is transmitted by tsetse flies. The mammalian ‘bloodstream form’ trypanosome has a variant surface glycoprotein coat and relies on glycolysis while the procyclic form from tsetse flies has EP protein on the surface and has a more developed mitochondrion. We show here that the mRNA for the procyclic-specific cytosolic phosphoglycerate kinase PGKB, like that for EP proteins, contains a regulatory AU-rich element (ARE) that destabilises the mRNA in bloodstream forms. The human HuR protein binds to, and stabilises, mammalian mRNAs containing AREs. Expression of HuR in bloodstream-form trypanosomes resulted in growth arrest and in stabilisation of the EP, PGKB and pyruvate, phosphate dikinase mRNAs, while three bloodstream-specific mRNAs were reduced in abundance. The synthesis and abundance of unregulated mRNAs and proteins were unaffected. Our results suggest that regulation of mRNA stability by AREs arose early in eukaryotic evolution.  相似文献   

7.
Quantitative direct fluorescent antibody methods were used in antigenic analysis of developmental stages of Trypanosoma brucei brucei strains, most of them having the same variant antigen B, which were derived from a cyclically transmissible stabilate. Antigen-B trypanosomes were used for initiation of cultures in modified Tobie's (Tm) medium and in Glossina morsitans morsitans organ cultures, and for the infective feed of G. m. morsitans. Antisera against antigen-B bloodstream forms and against Tm-grown culture forms were developed in rabbits by inoculations of disrupted organisms mixed (1:1) with complete Freund's adjuvant. The globulin fractions of the antisera were conjugated with fluorescein isothiocyanate, and processed on Sephadex G-25 and DEAE-cellulose columns. The DEAE fractions with 2.0 and 4.7 or 4.8 molar fluorescein:protein ratios were pooled and concentrated twofold.Examination of 109 flies at 30 or 31 days after the infective feed revealed about 18.3% midgut, about 10.1% proventricular, and about 3.7% salivary-gland infections. A salivary gland suspension from one of the infected flies gave rise to a parasitemia in a mouse, and trypanosomes from the first parasitemia were transferred by two 3-day syringe passages into another mouse. Smears were prepared of trypanosomes (antigens B-164, B-167) from the first parasitemias from these two mice, of intact B-antigen trypanosomes, of culture forms (CT) from Tm medium, and of procyclics (CG) from Glossina cultures as well as of midgut (GM), proventricular (GP), and salivary-gland (GS) forms from tsetse flies. All these forms were fixed by one or more of the three following methods: complete fixation (CoFix) by the formalin-NH4OH-Tween 80 procedure; fixation before affixation to slides (F+); fixation after affixation to slides (F?). The best results with regard to fluorescence intensity and specificity were obtained by using the CoFix technique.Statistical analyses of the fluorescence means of the antigens subjected to direct and inhibition staining gave the following results: (1) CT, CG, GM, and GP forms were antigenically the same. (2) GM and GP trypanosomes from different flies were antigenically indistinguishable. (3) The surface antigen of the variant-B bloodstream trypanosomes was different from these antigens of culture, midgut, and proventricular forms. It differed also from those of metacyclics from two flies and of B-164 and B-167 bloodstream forms. (4) No antigenic differences were found, in preparations fixed by the F? method, between B-164 and B-167 bloodstream trypanosomes and the metacyclics from two flies, one of which served as the source of the salivary-gland trypomastigotes (GS-98) that gave rise to these two bloodstream form antigens. (5) Closer antigenic relationships were noted between B forms and B-164 and B-167 trypanosomes than between B and CT organisms in smears fixed by the F+ technique, but no such differences were discernible in preparations fixed by the F? procedure.  相似文献   

8.
Li Z  Wang CC 《Eukaryotic cell》2008,7(11):1941-1950
Kinetoplastid membrane protein 11 (KMP-11) has been identified as a flagellar protein and is conserved among kinetoplastid parasites, but its potential function remains unknown. In a recent study, we identified KMP-11 as a microtubule-bound protein localizing to the flagellum as well as the basal body in both procyclic and bloodstream forms of Trypanosoma brucei (Z. Li, J. H. Lee, F. Chu, A. L. Burlingame, A. Gunzl, and C. C. Wang, PLoS One 3:e2354, 2008). Silencing of KMP-11 by RNA interference inhibited basal body segregation and cytokinesis in both forms and resulted in multiple nuclei of various sizes, indicating a continuous, albeit somewhat defective, nuclear division while cell division was blocked. KMP-11 knockdown in the procyclic form led to severely compromised formation of the new flagellum attachment zone (FAZ) and detachment of the newly synthesized flagellum. However, a similar phenotype was not observed in the bloodstream form depleted of KMP-11. Thus, KMP-11 is a flagellar protein playing critical roles in regulating cytokinesis in both forms of the trypanosomes. Its distinct roles in regulating FAZ formation in the two forms may provide a clue to the different mechanisms of cytokinetic initiation in procyclic and bloodstream trypanosomes.  相似文献   

9.
10.
The relation of naturally acquired host IgG in the surface coat of bloodstream forms of Trypanosoma lewisi to ablastin was studied to determine whether, contrary to a long-held conclusion, the antibody is avid and adsorbable. It was found by immunofluorescence and agglutination tests with monospecific antisera to rat IgG that bloodstream forms collected from immunosuppressed hosts, in contrast to those from immunocompetent hosts, have little or no detectable surface IgO. Specificity of adsorption was also demonstrated in other immunofluorescence experiments in which bloodstream forms from immunosuppressed hosts adsorbed IgG from immune serum with ablastic activity only (previously adsorbed with trypanosomes from immunocompetent hosts to remove the trypanocidal antibodies), but did not adsorb IgG from normal rat serum. To determine whether this specific adsorption of IgG by the parasite could be correlated with a reduction in ablastic activity, immune sera were adsorbed with bloodstream forms from immunosuppressed hosts at packed cell/serum ratios of either 1.2 or 2.0, and the adsorbed sera were then tested for ablastic activity in vitro. With both cell/serum ratios, ablastic activity was reduced by 50%. In comparison, similar adsorptions of immune sera with trypanosomes from immunocompetent hosts resulted in reductions of ablastic activity of only about 9 and 27% with the low and high cell/serum ratios, respectively. It is concluded that the failure to effect significant adsorption of ablastin in earlier studies resulted from the use of ablastinsensitized trypanosomes from immunocompetent hosts.  相似文献   

11.
The loss of variable antigen from Trypansoma brucei during transformation from the bloodstream to the procyclic form in vitro has been monitored by agglutination and immunofluorescence reactions using antisera against both forms. Maximum agglutination of transforming trypanosomes with anti-culture form sera was obtained in 36–48 hr coinciding with loss of the surface coat as seen by electron microscopy. Agglutination with antisera against homologous bloodstream forms, however, reached a constant minimum but still positive level after 7–9 days: absorption of such antisera with culture or heterologous bloodstream forms reduced this period of persistent agglutinability to 72–84 hr, suggesting that the sera contained antibodies to “common” (surface membrane) antigens which became exposed when the surface coat was lost during transformation. The indirect immunofluorescence reaction provided a direct correlation of loss of antigen with loss of coat. The majority of trypanosomes lost detectable variable antigen by 36–48 hr, but a few flagellates, morphologically resembling bloodstream forms, retained the coat and capacity for labeling up to 84 hr; the numbers of such persistent bloodstream forms were shown to be sufficient to give a positive agglutination reaction for the population as a whole up to this time. Variable antigen appeared to be lost by dilution over the entire trypanosome surface rather than in patches or caps and the relevance of this observation to the process of antigenic variation is discussed.  相似文献   

12.
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.  相似文献   

13.
Proteins with Pumilio RNA binding domains (Puf proteins) are ubiquitous in eukaryotes. Some Puf proteins bind to the 3′-untranslated regions of mRNAs, acting to repress translation and promote degradation; others are involved in ribosomal RNA maturation. The genome of Trypanosoma brucei encodes eleven Puf proteins whose function cannot be predicted by sequence analysis. We show here that epitope-tagged TbPUF7 is located in the nucleolus, and associated with a nuclear cyclophilin-like protein, TbNCP1. RNAi targeting PUF7 reduced trypanosome growth and inhibited two steps in ribosomal RNA processing.  相似文献   

14.
ABSTRACT. The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and Immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled ~3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks.  相似文献   

15.
African trypanosomes encode three monothiol glutaredoxins (1-C-Grx). 1-C-Grx1 occurs exclusively in the mitochondrion, and 1-C-Grx2 and -3 are predicted to be mitochondrial and cytosolic proteins, respectively. All three 1-C-Grx are expressed in both the mammalian bloodstream and the insect procyclic form of Trypanosoma brucei, with the highest levels found in stationary phase and starving parasites. In the rudimentary mitochondrion of bloodstream cells, 1-C-Grx1 reaches concentrations above 200 microm/subunit. Recombinant T. brucei 1-C-Grx1 exists as a noncovalent homodimer, whereas 1-C-Grx2 and 1-C-Grx3 are monomeric proteins. In vitro, dimeric 1-C-Grx1 coordinated an H(2)O(2)-sensitive [2Fe-2S] cluster that required GSH as an additional ligand. Both bloodstream and procyclic trypanosomes were refractory to down-regulation of 1-C-Grx1 expression by RNA interference. In procyclic parasites, the 1-c-grx1 alleles could only be deleted if an ectopic copy of the gene was expressed. A 5-10-fold overexpression of 1-C-Grx1 in both parasite forms did not yield a growth phenotype under optimal culture conditions. However, exposure of these cells to the iron chelator deferoxamine or H(2)O(2), but not to iron or menadione, impaired cell growth. Treatment of wild-type bloodstream parasites with deferoxamine and H(2)O(2) caused a 2-fold down- and up-regulation of 1-C-Grx1, respectively. The results point to an essential role of the mitochondrial 1-C-Grx1 in the iron metabolism of these parasites.  相似文献   

16.
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock‐out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.  相似文献   

17.
Phosphagen energy-buffering systems play an essential role in regulating the cellular energy homeostasis in periods of high-energy demand or energy supply fluctuations. Here we describe the phosphoarginine/arginine kinase system of the kinetoplastid parasite Trypanosoma brucei, consisting of three highly similar arginine kinase isoforms (TbAK1-3). Immunofluorescence microscopy using myc-tagged protein versions revealed that each isoform is located in a specific subcellular compartment: TbAK1 is exclusively found in the flagellum, TbAK2 in the glycosome, and TbAK3 in the cytosol of T. brucei. The flagellar location of TbAK1 is dependent on a 22 amino acid long N-terminal sequence, which is sufficient for targeting a GFP-fusion protein to the trypanosome flagellum. The glycosomal location of TbAK2 is in agreement with the presence of a conserved peroxisomal targeting signal, the C-terminal tripeptide ‘SNL’. TbAK3 lacks any apparent targeting sequences and is accordingly located in the cytosol of the parasite. Northern blot analysis indicated that each TbAK isoform is differentially expressed in bloodstream and procyclic forms of T. brucei, while the total cellular arginine kinase activity was 3-fold higher in bloodstream form trypanosomes. These results suggest a substantial change in the temporal and spatial energy requirements during parasite differentiation. Increased arginine kinase activity improved growth of procyclic form T. brucei during oxidative challenges with hydrogen peroxide. Elimination of the total cellular arginine kinase activity by RNA interference significantly decreased growth (>90%) of procyclic form T. brucei under standard culture conditions and was lethal for this life cycle stage in the presence of hydrogen peroxide. The putative physiological roles of the different TbAK isoforms in T. brucei are further discussed.  相似文献   

18.
SYNOPSIS. Diphenylamine was shown to be a potent inhibitor of cyanide insensitive respiration in both bloodstream and newly established culture forms of the same isolate of Trypanosoma brucei, with the L-α-glycerophosphate oxidase system having the greatest sensitivity to the inhibitor. The NADH oxidase activity of bloodstream forms was at least twice as sensitive to diphenylamine as the corresponding activity in culture forms, suggesting different routes of NADH oxidation in the 2 forms. The oxidation of L-α-glycerophosphate was inhibited to a similar degree in both culture and bloodstream forms. L-α-glycerophosphate oxidation in bloodstream forms differed from that found in culture forms in that the bloodstream system, unlike that in the culture form, was unable to donate electrons to cytochrome c. In culture form trypanosomes there was a distinct difference in the degree of diphenylamine inhibition on the oxidation of L-α-glycerophosphate, NADH, and succinate, suggesting the participation of separate flavoproteins in the oxidation of these substrates.  相似文献   

19.
Microbody division in mammalian cells, trypanosomes, and yeast depends on the PEX11 microbody membrane proteins. The function of PEX11 is not understood, and the suggestion that it affects microbody (peroxisome) numbers in mammals and yeast, because it plays a role in beta-oxidation of fatty acids, is controversial. PEX11 and two PEX11-related proteins, GIM5A and GIM5B, are the predominant membrane proteins of the microbodies (glycosomes) of Trypanosoma brucei. The compartmentation of glycosomal enzymes is essential in trypanosomes. Deletion of the GIM5A gene from the form of the parasite that lives in the mammalian blood has no effect on trypanosome growth, but depletion of GIM5B on a gim5a null background causes death. We show here that procyclic trypanosomes, adapted for life in the Tsetse fly vector, survive without GIM5A and with very low levels of GIM5B. The depleted cells have fewer glycosomes than usual and are osmotically fragile, which is a novel observation for a microbody defect. Thus trypanosomes require both GIM5B and PEX11 for the maintenance of normal glycosome numbers. Procyclic cells lacking GIM5A, like mouse cells partially defective in PEX11, have fewer ether-linked phospholipids, even when GIM5B levels are not reduced. Metabolite measurements on GIM5A/B-depleted bloodstream form trypanosomes suggested a change in the flux through the glycolytic pathway. We conclude that PEX11 family proteins play important roles in determining microbody membrane structure, with secondary effects on a subset of microbody metabolic pathways.  相似文献   

20.
THE life cycle of certain pathogenic African trypanosomes is characterized by a striking change in the mechanism of oxidative reactions on which the aerobic metabolism of the organism depends. Vertebrate bloodstream forms of Trypanosoma brucei group trypanosomes apparently depend on a non-mitochondrial, cyanide-insensitive α-glycerophosphate oxidase system1. Cells which become established when trypanosomes are grown in culture resemble those found in the insect vector. Early reports on the metabolism of these culture forms described a cyanide-sensitive terminal respiration2, associated with the presence of a complex mitochondrial network3,4 and cytochrome pigments2,5,6. The only reports of cyanide-insensitive respiration in culture forms have been for recently transformed Trypanosoma brucei7,8 and Trypanosoma mega9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号