首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于微流控技术的微生物细胞梯度稀释分离方法   总被引:1,自引:0,他引:1  
随着微流控分析技术的快速发展,集成化的微流控芯片在满足实验高通量的同时,还在微生物细胞分离领域呈现出独特的优势。本研究基于微流控技术,制备了以聚二甲基硅氧烷(PDMS)、玻片为材料的细菌细胞梯度稀释分离芯片。该芯片的核心是通过一系列复杂的梯度网络来实现对细菌悬液的连续稀释,最终被分离的细菌细胞进入通道末端的存储孔内。结果显示,该方法能分离出的最少细菌细胞数低于10个。此芯片平台操作简单、耗时短、成本低,为微生物单细胞研究提供了新的途径。  相似文献   

2.
It is well known that when a suspension of cells flows in small vessels (arterioles or venules), there exists a cell-free layer of a few microns adjacent to the vascular walls. Using an in vitro model, we show experimentally that for a fixed flow rate a geometrical constriction in the flow can artificially enhance the cell-free layer. Also, we show that rapid variation of the geometry coupled to the deformability of the cells can dramatically modify their spatial distribution in the channel. The effects of the constriction geometry, flow rate, suspending fluid viscosity, cell concentration, and cell deformability are studied and the results are interpreted in terms of a model of the hydrodynamic drift of an ellipsoidal cell in a shear flow. We propose a microfluidic application of this focusing effect for separation of the red blood cells from the suspending plasma.  相似文献   

3.
We have designed and developed a microfluidic system to study the response of cells to controlled gradients of mechanical stiffness in 3D collagen gels. An 'H'-shaped, source-sink network was filled with a type I collagen solution, which self-assembled into a fibrillar gel. A 1D gradient of genipin--a natural crosslinker that also causes collagen to fluoresce upon crosslinking--was generated in the cross-channel through the 3D collagen gel to create a gradient of crosslinks and stiffness. The gradient of stiffness was observed via fluorescence. A separate, underlying channel in the microfluidic construct allowed the introduction of cells into the gradient. Neurites from chick dorsal root ganglia explants grew significantly longer down the gradient of stiffness than up the gradient and than in control gels not treated with genipin. No changes in cell adhesion, collagen fiber size, or density were observed following crosslinking with genipin, indicating that the primary effect of genipin was on the mechanical properties of the gel. These results demonstrate that (1) the microfluidic system can be used to study durotactic behavior of cells and (2) neurite growth can be directed and enhanced by a gradient of mechanical properties, with the goal of incorporating mechanical gradients into nerve and spinal cord regenerative therapies.  相似文献   

4.
Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.  相似文献   

5.
The Coulter technique enables rapid analysis of particles or cells suspended in a fluid stream. In this technique, the cells are suspended in an electrically conductive solution, which is hydrodynamically focused by nonconducting sheath flows. The cells produce a characteristic voltage signal when they interrupt an electrical path. The population and size of the cells can be obtained through analyzing the voltage signal. In a microfluidic Coulter counter device, the hydrodynamic focusing technique is used to position the conducting sample stream and the cells and also to separate close cells to generate distinct signals for each cell and avoid signal jam. The performance of hydrodynamic focusing depends on the relative flow ratio between the sample stream and sheath stream. We use a numerical approach to study the hydrodynamic focusing in a microfluidic Coulter counter device. In this approach, the flow field is described by solving the incompressible Navier-Stokes equations. The sample stream concentration is modeled by an advection-diffusion equation. The motion of the cells is governed by the Newton-Euler equations of motion. Particle motion through the flow field is handled using an overlapping grid technique. A numerical model for studying a microfluidic Coulter counter has been validated. Using the model, the impact of relative flow rate on the performance of hydrodynamic focusing was studied. Our numerical results show that the position of the sample stream can be controlled by adjusting the relative flow rate. Our simulations also show that particles can be focused into the stream and initially close particles can be separated by the hydrodynamic focusing. From our study, we conclude that hydrodynamic focusing provides an effective way to control the position of the sample stream and cells and it also can be used to separate cells to avoid signal jam.  相似文献   

6.
Cell separation is broadly useful for applications in clinical diagnostics, biological research, and potentially regenerative medicine. Recent attention has been paid to label‐free size‐based techniques that may avoid the costs or clogging issues associated with centrifugation and mechanical filtration. We present for the first time a massively parallel microfluidic device that passively separates pathogenic bacteria cells from diluted blood with macroscale performance. The device was designed to process large sample volumes in a high‐throughput, continuous manner using 40 single microchannels placed in a radial array with one inlet and two rings of outlets. Each single channel consists of a short focusing, gradual expansion and collection region and uses unique differential transit times due to size‐dependent inertial lift forces as a method of cell separation. The gradual channel expansion region is shown to manipulate cell equilibrium positions close to the microchannel walls, critical for higher efficiency collection. We demonstrate >80% removal of pathogenic bacteria from blood after two passes of the single channel system. The massively parallel device can process 240 mL/h with a throughput of 400 million cells/min. We expect that this parallelizable, robust, and label‐free approach would be useful for filtration of blood as well as for other cell separation and concentration applications from large volume samples. Biotechnol. Bioeng. 2010;107: 302–311. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.  相似文献   

8.
Isolation of phenotypically-pure cell subpopulations from heterogeneous cell mixtures such as blood is a difficult yet fundamentally important task. Current techniques such as fluorescent activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) require pre-incubation with antibodies which lead to processing times of at least 15-60 min. In this study, we explored the use of antibody-coated microfluidic chambers to negative deplete undesired cell types, thus obtaining an enriched cell subpopulation at the outlet. We used human lymphocyte cell lines, MOLT-3 and Raji, as a model system to examine the dynamic cell binding behavior on antibody coated surfaces under shear flow. Shear stress ranging between 0.75 and 1.0 dyn/cm2 was found to provide most efficient separation. Cell adhesion was shown to follow pseudo-first order kinetics, and an anti-CD19 coated (Raji-depletion) device with approximately 2.6 min residence time was demonstrated to produce 100% pure MOLT-3 cells from 50-50 MOLT-3/Raji mixture. We have developed a mathematical model of the separation device based on the experimentally determined kinetic parameters that can be extended to design future separation modules for other cell mixtures. We conclude that we can design microfluidic devices that exploits the kinetics of dynamic cell adhesion to antibody coated surfaces to provide enriched cell subpopulations within minutes of total processing time.  相似文献   

9.
Microfluidics-based cell assays offer high levels of automation and integration, and allow multiple assays to be run in parallel, based on reduced sample volumes. These characteristics make them attractive for studies associated with drug discovery. Controlled delivery of drug molecules or other exogenous materials into cells is a critical issue that needs to be addressed before microfluidics can serve as a viable platform for drug screening and studies. In this study, we report the application of hydrodynamic focusing for controlled delivery of small molecules into cells immobilized on the substrate of a microfluidic device. We delivered calcein AM which was permeant to the cell membrane into cells, and monitored its enzymatic conversion into fluorescent calcein during and after the delivery. Different ratios of the sample flow to the side flow were tested to determine how the conditions of hydrodynamic focusing affected the delivery. A 3D numerical model was developed to help understand the fluid flow, molecular diffusion due to hydrodynamic focusing in the microfluidic channel. The results from the simulation indicated that the calcein AM concentration on the outer surface of a cell was determined by the conditions of hydrodynamic focusing. By comparing the results from the simulation with those from the experiment, we found that the calcein AM concentration on the cell outer surface correlated very well with the amount of the molecules delivered into the cell. This suggests that hydrodynamic focusing provides an effective way for potentially quantitative delivery of exogenous molecules into cells at the single cell or subcellular level. We expect that our technique will pave the way to high-throughput drug screening and delivery on a microfluidic platform.  相似文献   

10.
Ko JM  Ju J  Lee S  Cha HC 《Protoplasma》2006,227(2-4):237-240
Summary. Several advances have been made in the use of microfluidic devices for insect and mammalian cell cultures, but no reports of their use for plant cell cultures have been published. We, therefore, conducted a plant cell culture in a microfluidic device using polydimethylsiloxane. Nicotiana tabacum protoplasts were cultured in a variously shaped polydimethylsiloxane channel containing Nitsch medium supplemented with 0.5 g of NLN-13 vitamin mixture, 2.0 mg of α-naphthaleneacetic acid, and 0.5 mg of 6-benzyladenine per liter and 9% mannitol. Protoplasts in the polydimethylsiloxane channel showed cell division and microcolony formation within 4 weeks. The use of a microfluidic channel is a novel technique in the field of plant cell culture. The results of this study will encourage the utilization of polydimethylsiloxane-based microfluidic devices in plant cell engineering and cell analysis. Correspondence and reprints: Department of Biology, Dankook University, 29 San Anseo-dong, Cheonan 300-714, South Korea.  相似文献   

11.
Human red blood cells were treated in different ways to alter their membrane deformability, and the hydrodynamic behavior of these altered cells was studied using the steric field-flow fractionation (FFF) technique. The relationships between cell retention in the FFF channel, flow-rate of the carrier fluid and the applied field strength were studied for normal and glutaraldehyde-fixed human red cells, and separation conditions were optimized. The effect of flow-induced hydrodynamic lift forces on red cell retention in the steric FFF channel was studied, and the results suggest that the membrane deformability of the red cell is an important factor contributing to the lift force, besides other previously described effects due to density and flow velocity. Using steric FFF, a mixture of normal and glutaraldehyde-fixed human red cells was completely separated with a resolution twice that found in published d ata from gel permeation, another hydrodynamic separation technique. Partial loss of membrane deformability, induced by different degrees of glutaraldehyde-fixation, by diamide, or by a thermal treatment, has also been studied. Steric FFF is thus shown to have potential for rapid separation and differentiation of red cells with different density and membrane deformability, conditions known to be associated with, e.g., cell senescence and certain hematological diseases.  相似文献   

12.
High-throughput single cell analysis is required for understanding and predicting the complex stochastic responses of individual cells in changing environments. We have designed a microfluidic device consisting of parallel, independent channels with cell-docking structures for the formation of an array of individual cells. The microfluidic cell array was used to quantify single cell responses and the distribution of response patterns of calcium channels among a population of individual cells. In this device, 15 cell-docking units in each channel were fabricated with each unit containing 5 sandbag structures, such that an array of individual cells was formed in 8 independent channels. Single cell responses to different treatments in different channels were monitored in parallel to study the effects of the specific activator and inhibitor of the Ca2+ release-activated Ca2+ (CRAC) channels. Multichannel detection was performed to obtain the response patterns of the population of cells within this single cell array. The results demonstrate that it is possible to acquire single cell features in multichannels simultaneously with passive structural control, which provides an opportunity for high-throughput single cell response analysis in a microfluidic chip.  相似文献   

13.
BACKGROUND: Cytomics aims at understanding the function of cellular systems by analysis of single cells. Recently, there has been a growing interest in single cell measurements being performed in microfluidic systems. These systems promise to integrate staining, measurement, and analysis in a single system. One important aspect is the limitation of allowable cell sizes due to microfluidic channel dimensions. Here we want to demonstrate the broad applicability of microfluidic chip technology for the analysis of many different cell types. METHODS: We have developed a microfluidic chip and measurement system that allows flow cytometric analysis of fluorescently stained cells from different organisms. In this setup, the cells are moved by pressure-driven flow inside a network of microfluidic channels and are analyzed individually by fluorescence detection. RESULTS: We have successfully applied the system to develop a methodology to detect viable and dead cells in yeast cell populations. Also, we have measured short interfering RNA (siRNA) mediated silencing of protein expression in mammalian cells. In addition, we have characterized the infection state of Magnaportae grisea fungal spores. CONCLUSIONS: Results obtained with the microfluidic system demonstrate a broad applicability of microfluidic flow cytometry to measurement of various cell types.  相似文献   

14.
A major challenge for cell-based therapy is the inability to systemically target a large quantity of viable cells with high efficiency to tissues of interest following intravenous or intraarterial infusion. Consequently, increasing cell homing is currently studied as a strategy to improve cell therapy. Cell rolling on the vascular endothelium is an important step in the process of cell homing and can be probed in-vitro using a parallel plate flow chamber (PPFC). However, this is an extremely tedious, low throughput assay, with poorly controlled flow conditions. Instead, we used a multi-well plate microfluidic system that enables study of cellular rolling properties in a higher throughput under precisely controlled, physiologically relevant shear flow1,2. In this paper, we show how the rolling properties of HL-60 (human promyelocytic leukemia) cells on P- and E-selectin-coated surfaces as well as on cell monolayer-coated surfaces can be readily examined. To better simulate inflammatory conditions, the microfluidic channel surface was coated with endothelial cells (ECs), which were then activated with tumor necrosis factor-α (TNF-α), significantly increasing interactions with HL-60 cells under dynamic conditions. The enhanced throughput and integrated multi-parameter software analysis platform, that permits rapid analysis of parameters such as rolling velocities and rolling path, are important advantages for assessing cell rolling properties in-vitro. Allowing rapid and accurate analysis of engineering approaches designed to impact cell rolling and homing, this platform may help advance exogenous cell-based therapy.  相似文献   

15.
The efficient isolation of viable and intact circulating tumor cells (CTCs) from blood is critical for the genetic analysis of cancer cells, prediction of cancer progression, development of drugs, and evaluation of therapeutic treatments. While conventional cell separation devices utilize the size difference between CTCs and other blood cells, they fail to separate CTCs from white blood cells (WBCs) due to significant size overlap. To overcome this issue, we present a novel approach that combines curved contraction–expansion (CE) channels with dielectrophoresis (DEP) and inertial microfluidics to isolate CTCs from WBCs regardless of size overlap. This label-free and continuous separation method utilizes dielectric properties and size variation of cells for the separation of CTCs from WBCs. The results demonstrate that the proposed hybrid microfluidic channel can effectively isolate A549 CTCs from WBCs regardless of their size with a throughput of 300 μL/min, achieving a high separation distance of 233.4 μm at an applied voltage of 50 Vp–p. The proposed method allows for the modification of cell migration characteristics by controlling the number of CE sections of the channel, applied voltage, applied frequency, and flow rate. With its unique features of a single-stage separation, simple design, and tunability, the proposed method provides a promising alternative to the existing label-free cell separation techniques and may have a wide range of applications in biomedicine.  相似文献   

16.
Analysis of rare cells in heterogenous mixtures is proven to be beneficial for regenerative medicine, cancer treatment and prenatal diagnostics. Scarcity of these cells, however, makes the isolation process extremely challenging. Efficiency in cell isolation is still low and therefore, novel cell isolation strategies with new biomarkers need exploration. In this study, we investigated the feasibility of using the mechanical stiffness difference to detect and isolate the rare cells from the surrounding cells without labelling them. Fluid and solid mechanics simulations have shown that cell isolation can be performed at high efficiency using stiffness-based isolation. Accuracy of the numerical simulations is established using microfluidic flow chamber experiments.  相似文献   

17.
Interest in electrical lysis of biological cells on a microfludic platform has increased because it allows for the rapid recovery of intracellular contents without introducing lytic agents. In this study we demonstrated a simple microfluidic flow-through device which lysed Escherichia coli cells under a continuous dc voltage. The E. coli cells had previously been modified to express green fluorescent protein (GFP). In our design, the cell lysis only happened in a defined section of a microfluidic channel due to the local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis by several folds. We found that local field strength of 1000-1500 V/cm was required for nearly 100% cell death. This threshold field strength was considerably lower than the value reported in the literature, possibly due to the longer duration of the field [Lee, S.W., Tai, Y.C., 1999. Sens. Actuators A: Phys. 73, 74-79]. Cell lysis was detected by both plate count and fluorescence spectroscopy. The cell membrane was completely disintegrated in the lysis section of the microfluidic device, when the field strength was higher than 2000 V/cm. The devices were fabricated using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance. Our tool will be ideal for high throughput processing of bacterial cells for chemical analysis of intracellular contents such as DNA and proteins. The application of continuous dc voltage greatly simplified the instrumentation compared to devices using electrical pulses for similar purposes. In principle, the same approach can also be applied for lysis of mammalian cells and electroporative transfection.  相似文献   

18.
Knowledge of cell mechanical properties, such as elastic modulus, is essential to understanding the mechanisms by which cells carry out many integrated functions in health and disease. Cellular stiffness is regulated by the composition, structural organization, and indigenous mechanical stress (or prestress) borne by the cytoskeleton. Current methods for measuring stiffness and cytoskeletal prestress of living cells necessitate either limited spatial resolution but with high speed, or spatial maps of the entire cell at the expense of long imaging times. We have developed a novel technique, called biomechanical imaging, for generating maps of both cellular stiffness and prestress that requires less than 30 s of interrogation time, but which provides subcellular spatial resolution. The technique is based on the ability to measure tractions applied to the cell while simultaneously observing cell deformation, combined with capability to solve an elastic inverse problem to find cell stiffness and prestress distributions. We demonstrated the application of this technique by carrying out detailed mapping of the shear modulus and cytoskeletal prestress distributions of 3T3 fibroblasts, making no assumptions regarding those distributions or the correlation between them. We also showed that on the whole cell level, the average shear modulus is closely associated with the average prestress, which is consistent with the data from the literature. Data collection is a straightforward procedure that lends itself to other biochemical/biomechanical interventions. Biomechanical imaging thus offers a new tool that can be used in studies of cell biomechanics and mechanobiology where fast imaging of cell properties and prestress is desired at subcellular resolution.  相似文献   

19.
Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process.cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles.Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing crossover frequency of a particle or cell, the frequency at which the dielectrophoretic force is zero. Finally, we demonstrate the use of this technique for sorting a mixture of ovarian cancer cells and fluorescing microspheres (beads).  相似文献   

20.
Low throughput is an inherent problem associated with most single-molecule biophysical techniques. We have developed a versatile tool for high-throughput analysis of DNA and DNA-binding molecules by combining microfluidic and dense DNA arrays. We use an easy-to-process microfluidic flow channel system in which dense DNA arrays are prepared for simultaneous imaging of large amounts of DNA molecules with single-molecule resolution. The Y-shaped microfluidic design, where the two inlet channels can be controlled separately and precisely, enables the creation of a concentration gradient across the microfluidic channel as well as rapid and repeated addition and removal of substances from the measurement region. A DNA array stained with the fluorescent DNA-binding dye YOYO-1 in a gradient manner illustrates the method and serves as a proof of concept. We have applied the method to studies of the repair protein Rad51 and could directly probe the concentration-dependent DNA-binding behavior of human Rad51 (HsRad51). In the low-concentration regime used (100 nM HsRad51 and below), we detected binding to double-stranded DNA (dsDNA) without positive cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号