首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. The representation of taste and other food-related stimuli in the orbitofrontal cortex of macaques is found from its lateral border throughout area 13 to within 7 mm of the midline, and in humans the representation of food-related and other pleasant stimuli is found particularly in the medial orbitofrontal cortex. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex, and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food which drives food intake. A neuronal representation of taste is also found in the pregenual cingulate cortex, which receives inputs from the orbitofrontal cortex, and in humans many pleasant stimuli activate the pregenual cingulate cortex, pointing towards this as an important area in motivation and emotion.  相似文献   

2.
We used a 2 x 2 factorial design to dissociate regions responding to taste intensity and taste affective valence. Two intensities each of a pleasant and unpleasant taste were presented to subjects during event-related fMRI scanning. The cerebellum, pons, middle insula, and amygdala responded to intensity irrespective of valence. In contrast, valence-specific responses were observed in anterior insula/operculum extending into the orbitofrontal cortex (OFC). The right caudolateral OFC responded preferentially to pleasant compared to unpleasant taste, irrespective of intensity, and the left dorsal anterior insula/operculuar region responded preferentially to unpleasant compared to pleasant tastes equated for intensity. Responses best characterized as an interaction between intensity and pleasantness were also observed in several limbic regions. These findings demonstrate a functional segregation within the human gustatory system. They also show that amygdala activity may be driven by stimulus intensity irrespective of valence, casting doubt upon the notion that the amygdala responds preferentially to negative stimuli.  相似文献   

3.
E T Rolls 《Chemical senses》2001,26(5):595-604
Approximately 35% of neurons in the orbitofrontal cortex taste and olfactory areas with olfactory responses provide a representation of odour that depends on the taste with which the odour has been associated previously. This representation is produced by a slowly acting learning mechanism that learns associations between odour and taste. Other neurons in the orbitofrontal cortex respond to both the odour and to the mouth feel of fat. The representation of odour thus moves for at least some neurons in the orbitofrontal cortex beyond the domain of physico-chemical properties of the odours to a domain where the ingestion-related significance of the odour determines the representation provided. Olfactory neurons in the primate orbitofrontal cortex decrease their responses to a food eaten to satiety, but remain responsive to other foods, thus contributing to a mechanism for olfactory sensory-specific satiety. It has been shown in neuroimaging studies that the human orbitofrontal cortex provides a representation of the pleasantness of odour, in that the activation produced by the odour of a food eaten to satiety decreases relative to another food-related odour not eaten in the meal. In the same general area there is a representation of the pleasantness of the smell, taste and texture of a whole food, in that activation in this area decreases to a food eaten to satiety, but not to a food that has not been eaten in the meal.  相似文献   

4.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour and the activation produced by the odour in the orbitofrontal cortex. These findings provide a basis for understanding how what is in the mouth is represented by independent information channels in the brain; how the information from these channels is combined; and how and where the reward and subjective affective value of food is represented and is influenced by satiety signals. Activation of these representations in the orbitofrontal cortex may provide the goal for eating, and understanding them helps to provide a basis for understanding appetite and its disorders.  相似文献   

5.

Background

Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.

Methods

We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI).

Results

In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area.

Conclusions

Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.  相似文献   

6.
Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI, resting-state fMRI and diffusion tensor imaging (DTI) to investigate the maturation of control processes underlying problem solving skills in 7-9 year-old children. Our analysis focused on two key neurocognitive networks implicated in a wide range of cognitive tasks including control: the insula-cingulate salience network, anchored in anterior insula (AI), ventrolateral prefrontal cortex and anterior cingulate cortex, and the fronto-parietal central executive network, anchored in dorsolateral prefrontal cortex and posterior parietal cortex (PPC). We found that, by age 9, the AI node of the salience network is a major causal hub initiating control signals during problem solving. Critically, despite stronger AI activation, the strength of causal regulatory influences from AI to the PPC node of the central executive network was significantly weaker and contributed to lower levels of behavioral performance in children compared to adults. These results were validated using two different analytic methods for estimating causal interactions in fMRI data. In parallel, DTI-based tractography revealed weaker AI-PPC structural connectivity in children. Our findings point to a crucial role of AI connectivity, and its causal cross-network influences, in the maturation of dynamic top-down control signals underlying cognitive development. Overall, our study demonstrates how a unified neurocognitive network model when combined with multimodal imaging enhances our ability to generalize beyond individual task-activated foci and provides a common framework for elucidating key features of brain and cognitive development. The quantitative approach developed is likely to be useful in investigating neurodevelopmental disorders, in which control processes are impaired, such as autism and ADHD.  相似文献   

7.
Ozaki TJ 《PloS one》2011,6(5):e20079
Previous effective connectivity analyses of functional magnetic resonance imaging (fMRI) have revealed dynamic causal streams along the dorsal attention network (DAN) during voluntary attentional control in the human brain. During resting state, however, fMRI has shown that the DAN is also intrinsically configured by functional connectivity, even in the absence of explicit task demands, and that may conflict with effective connectivity studies. To resolve this contradiction, we performed an effective connectivity analysis based on partial Granger causality (pGC) on event-related fMRI data during Posner's cueing paradigm while optimizing experimental and imaging parameters for pGC analysis. Analysis by pGC can factor out exogenous or latent influences due to unmeasured variables. Typical regions along the DAN with greater activation during orienting than withholding of attention were selected as regions of interest (ROIs). pGC analysis on fMRI data from the ROIs showed that frontal-to-parietal top-down causal streams along the DAN appeared during (voluntary) orienting, but not during other, less-attentive and/or resting-like conditions. These results demonstrate that these causal streams along the DAN exclusively mediate voluntary covert orienting. These findings suggest that neural representations of attention in frontal regions are at the top of the hierarchy of the DAN for embodying voluntary attentional control.  相似文献   

8.
While there is a growing body of functional magnetic resonance imaging (fMRI) evidence implicating a corpus of brain regions in value-based decision-making in humans, the limited temporal resolution of fMRI cannot address the relative temporal precedence of different brain regions in decision-making. To address this question, we adopted a computational model-based approach to electroencephalography (EEG) data acquired during a simple binary choice task. fMRI data were also acquired from the same participants for source localization. Post-decision value signals emerged 200 ms post-stimulus in a predominantly posterior source in the vicinity of the intraparietal sulcus and posterior temporal lobe cortex, alongside a weaker anterior locus. The signal then shifted to a predominantly anterior locus 850 ms following the trial onset, localized to the ventromedial prefrontal cortex and lateral prefrontal cortex. Comparison signals between unchosen and chosen options emerged late in the trial at 1050 ms in dorsomedial prefrontal cortex, suggesting that such comparison signals may not be directly associated with the decision itself but rather may play a role in post-decision action selection. Taken together, these results provide us new insights into the temporal dynamics of decision-making in the brain, suggesting that for a simple binary choice task, decisions may be encoded predominantly in posterior areas such as intraparietal sulcus, before shifting anteriorly.  相似文献   

9.
Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology--e.g. depression, anxiety and schizophrenia--later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures.  相似文献   

10.
Reappraisal is a well-known emotion regulation strategy. Recent neuroimaging studies suggest that reappraisal recruits both medial and lateral prefrontal brain regions. However, few studies have investigated neural representation of reappraisals associated with anticipatory anxiety, and the specific nature of the brain activity underlying this process remains unclear. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with reappraisals of transient anticipatory anxiety. Although transient anxiety activated mainly subcortical regions, reappraisals targeting the anxiety were associated with increased activity in the medial and lateral prefrontal regions (including the orbitofrontal and anterior cingulate cortices). Reappraisal decreased fear circuit activity (including the amygdala and thalamus). Correlational analysis demonstrated that reductions in subjective anxiety associated with reappraisal were correlated with orbitofrontal and anterior cingulate cortex activation. Reappraisal recruits medial and lateral prefrontal regions; particularly the orbitofrontal and anterior cingulate cortices are associated with successful use of this emotion regulation strategy.  相似文献   

11.
Neural responses during anticipation of a primary taste reward   总被引:29,自引:0,他引:29  
The aim of this study was to determine the brain regions involved in anticipation of a primary taste reward and to compare these regions to those responding to the receipt of a taste reward. Using fMRI, we scanned human subjects who were presented with visual cues that signaled subsequent reinforcement with a pleasant sweet taste (1 M glucose), a moderately unpleasant salt taste (0.2 M saline), or a neutral taste. Expectation of a pleasant taste produced activation in dopaminergic midbrain, posterior dorsal amygdala, striatum, and orbitofrontal cortex (OFC). Apart from OFC, these regions were not activated by reward receipt. The findings indicate that when rewards are predictable, brain regions recruited during expectation are, in part, dissociable from areas responding to reward receipt.  相似文献   

12.
The lateral prefrontal and orbitofrontal cortices have both been implicated in emotion regulation, but their distinct roles in regulation of negative emotion remain poorly understood. To address this issue we enrolled 58 participants in an fMRI study in which participants were instructed to reappraise both negative and neutral stimuli. This design allowed us to separately study activations reflecting cognitive processes associated with reappraisal in general and activations specifically related to reappraisal of negative emotion. Our results confirmed that both the dorsolateral prefrontal cortex (DLPFC) and the lateral orbitofrontal cortex (OFC) contribute to emotion regulation through reappraisal. However, activity in the DLPFC was related to reappraisal independently of whether negative or neutral stimuli were reappraised, whereas the lateral OFC was uniquely related to reappraisal of negative stimuli. We suggest that relative to the lateral OFC, the DLPFC serves a more general role in emotion regulation, perhaps by reflecting the cognitive demand that is inherent to the regulation task.  相似文献   

13.
The insular cortex is implicated in general attention and in taste perception. The effect of selective attention to taste on insular responses may therefore reflect a general effect of attention or it may be (taste) modality specific. To distinguish between these 2 possibilities, we used functional magnetic resonance imaging to evaluate brain response to tastes and odors while subjects passively sampled the stimuli or performed a detection task. We found that trying to detect a taste (attention to taste) resulted in activation of the primary taste cortex (anterior and mid-dorsal insula) but not in the primary olfactory cortex (piriform). In contrast, trying to detect an odor (attention to odor) increased activity in primary olfactory but not primary gustatory cortex. However, we did identify a region of far anterior insular cortex that responded to both taste and odor "searches." These results demonstrate modality-specific activation of primary taste cortex by attention to taste and primary olfactory cortex by attention to odor and rule out the possibility that either response reflects a general effect of attentional deployment. The findings also support the existence of a multimodal region in far anterior insular cortex that is sensitive to directed attention to taste and smell.  相似文献   

14.
近年来,默认网络是认知神经科学领域的研究热点之一,已有研究报告它可能参与了多种认知活动,而且某些精神疾病也与其异常活动相关.但默认网络内主要脑区之间的有向连接关系(有效连接模式)尚不明确.本研究使用国际前沿的谱动态因果模型算法,基于7T高分辨率静息态功能磁共振数据,对默认网络4个核心脑区之间的有效连接模式进行了探索.实验结果发现,默认网络内后扣带回接受内侧前额叶、双侧顶下叶的信息输入,可能扮演着信息集合中心的角色,而双侧顶下叶对内侧前额叶、后扣带回都有信息输入,在默认网络内可能起到信息驱动和调节的功能.本研究首次报道了基于7T功能磁共振数据得到的默认网络有向连接图谱,对于我们更深入理解默认网络的功能具有帮助,对相关精神疾病的研究具有潜在的参考应用价值.  相似文献   

15.
Behavioral studies reveal that obese vs. lean individuals show attentional bias to food stimuli. Yet research has not investigated this relation using objective brain imaging or tested whether attentional bias to food stimuli predicts future weight gain, which are important aims given the prominence of food cues in the environment. We used functional magnetic resonance imaging (fMRI) to examine attentional bias in 35 adolescent girls ranging from lean to obese using an attention network task involving food and neutral stimuli. BMI correlated positively with speed of behavioral response to both appetizing food stimuli and unappetizing food stimuli, but not to neutral stimuli. BMI correlated positively with activation in brain regions related to attention and food reward, including the anterior insula/frontal operculum, lateral orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (vlPFC), and superior parietal lobe, during initial orientation to food cues. BMI also correlated with greater activation in the anterior insula/frontal operculum during reallocation of attention to appetizing food images and with weaker activation in the medial OFC and ventral pallidum during reallocation of attention to unappetizing food images. Greater lateral OFC activation during initial orientation to appetizing food cues predicted future increases in BMI. Results indicate that overweight is related to greater attentional bias to food cues and that youth who show elevated reward circuitry responsivity during food cue exposure are at increased risk for weight gain.  相似文献   

16.
In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.  相似文献   

17.
Hua QP  Luo F 《生理科学进展》2007,38(4):323-326
过去曾认为,人类触觉信息特异地由大直径有髓(Aβ)神经纤维传导。然而最近的研究表明,哺乳动物皮肤的机械感受器不仅有Aβ纤维分布,还有大量低阈值、低传导速度的小直径无髓(C)神经纤维分布,后者对轻微的非伤害性皮肤变形反应敏感,而对快速的皮肤运动反应微弱。初级传入C纤维投射至脊髓浅层,并与脊髓板层II内的次级感觉神经元形成突触联系,再通过脊髓丘脑束投射至岛叶。功能磁共振(fMRI)研究发现,缓慢移动的触觉刺激可以明显地激活岛叶并引起愉悦感,同时还可以激活眶额叶内与愉悦味觉和嗅觉激活区域邻近的部位。这些反应的性质和所激活的部位说明,C纤维触觉主要与边缘系统的功能有关,编码触觉的情绪成分。  相似文献   

18.
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.  相似文献   

19.
Selective attention is thought to be associated with enhanced processing in modality-specific cortex. We used functional magnetic resonance imaging to evaluate brain response during a taste detection task. We demonstrate that trying to detect the presence of taste in a tasteless solution results in enhanced activity in insula and overlying operculum. The same task does not recruit orbitofrontal cortex (OFC). Instead, the OFC responds preferentially during receipt of an unpredicted taste stimulus. These findings demonstrate functional specialization of taste cortex in which the insula and the overlying operculum are recruited during taste detection and selective attention to taste, and the OFC is recruited during receipt of an unpredicted taste stimulus.  相似文献   

20.
The neural signature of social norm compliance   总被引:1,自引:0,他引:1  
All known human societies establish social order by punishing violators of social norms. However, little is known about how the brain processes the punishment threat associated with norm violations. We use fMRI to study the neural circuitry behind social norm compliance by comparing a treatment in which norm violations can be punished with a control treatment in which punishment is impossible. Individuals' increase in norm compliance when punishment is possible exhibits a strong positive correlation with activations in the lateral orbitofrontal cortex and right dorsolateral prefrontal cortex. Moreover, lateral orbitofrontal cortex activity is strongly correlated with Machiavellian personality characteristics. These findings indicate a neural network involved in social norm compliance that might constitute an important basis for human sociality. Different activations of this network reveal individual differences in the behavioral response to the punishment threat and might thus provide a deeper understanding of the neurobiological sources of pathologies such as antisocial personality disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号