首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Smallpox (variola virus) is a bioweapon concern. Monkeypox is a growing zoonotic poxvirus threat. These problems have resulted in extensive efforts to develop potential therapeutics that can prevent or treat potentially lethal poxvirus infections in humans. Monoclonal antibodies (mAbs) against smallpox are a conservative approach to this problem, as the licensed human smallpox vaccine (vaccinia virus, VACV) primarily works on the basis of protective antibody responses against smallpox. Fully human mAbs (hmAbs) against vaccinia H3 (H3L) and B5 (B5R), targeting both the mature virion (MV) and extracellular enveloped virion (EV) forms, have been developed as potential therapeutics for use in humans. Post-exposure prophylaxis was assessed in both murine and rabbit animal models. Therapeutic efficacy of the mAbs was assessed in three good laboratory practices (GLP) studies examining severe combined immunodeficiency mice (SCID) given a lethal VACV infection. Pre-exposure combination hmAb therapy provided significantly better protection against disease and death than either single hmAb or vaccinia immune globulin (VIG). Post-exposure combination mAb therapy provided significant protection against disease and death, and appeared to fully cure the VACV infection in ≥50% of SCID mice. Therapeutic efficacy was then assessed in two rabbit studies examining post-exposure hmAb prophylaxis against rabbitpox (RPXV). In the first study, rabbits were infected with RPVX and then provided hmAbs at 48 hrs post-infection, or 1 hr and 72 hrs post-infection. Rabbits in both groups receiving hmAbs were 100% protected from death. In the second rabbitpox study, 100% of animal treated with combination hmAb therapy and 100% of animals treated with anti-B5 hmAb were protected. These findings suggest that combination hmAb treatment may be effective at controlling smallpox disease in immunocompetent or immunodeficient humans.  相似文献   

2.
Poxviruses such as virulent vaccinia virus (VACV) strain Western Reserve encode a broad range of immune modulators that interfere with host responses to infection. Upon more than 570 in vitro passages in chicken embryo fibroblasts (CEF), chorioallantois VACV Ankara (CVA) accumulated mutations that resulted in highly attenuated modified vaccinia virus Ankara (MVA). MVA infection of mice and of dendritic cells (DC) induced significant type I interferon (IFN) responses, whereas infection with VACV alone or in combination with MVA did not. These results implied that VACV expressed an IFN inhibitor(s) that was functionally deleted in MVA. To further characterize the IFN inhibitor(s), infection experiments were carried out with CVA strains isolated after 152 (CVA152) and 386 CEF passages (CVA386). Interestingly, neither CVA152 nor CVA386 induced IFN-α, whereas the latter variant did induce IFN-β. This pattern suggested a consecutive loss of inhibitors during MVA attenuation. Similar to supernatants of VACV- and CVA152-infected DC cultures, recombinantly expressed soluble IFN decoy receptor B18, which is encoded in the VACV genome, inhibited MVA-induced IFN-α but not IFN-β. In the same direction, a B18R-deficient VACV variant triggered only IFN-α, confirming B18 as the soluble IFN-α inhibitor. Interestingly, VACV infection inhibited IFN responses induced by a multitude of different stimuli, including oligodeoxynucleotides containing CpG motifs, poly(I:C), and vesicular stomatitis virus. Collectively, the data presented show that VACV-mediated IFN inhibition is a multistep process involving secreted factors such as B18 plus intracellular components that cooperate to efficiently shut off systemic IFN-α and IFN-β responses.  相似文献   

3.
Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin–treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin–treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.  相似文献   

4.
Gamma interferon-deficient (IFN-γ−/−) mice with a C57BL/6 background were infected intraperitoneally with mouse hepatitis virus strain JHM (JHMV). In contrast to IFN-γ-+/− and IFN-γ+/+ mice, JHMV persisted in IFN-γ−/− mice and induced death during the subacute phase of the infection. Unexpectedly, infected IFN-γ−/− mice showed severe peritonitis accompanying the accumulation of a viscous fluid in the abdominal and thoracic cavities in the subacute phase. Destructive changes of hepatocytes were not observed. Administration of recombinant IFN-γ protracted the survival time of IFN-γ−/− mice after JHMV infection. These results demonstrate that IFN-γ plays a critical role in viral clearance in JHMV infection. They also show that a resultant persistent JHMV infection induces another form of disease in IFN-γ−/− mice, which bears a resemblance to feline infectious peritonitis in cats.  相似文献   

5.
Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.  相似文献   

6.
Infection of SCID mice with a recombinant murine coronavirus (mouse hepatitis virus [MHV]) expressing the T-cell chemoattractant CXC chemokine ligand 10 (CXCL10) resulted in increased survival and reduced viral burden within the brain and liver compared to those of mice infected with an isogenic control virus (MHV), supporting an important role for CXCL10 in innate immune responses following viral infection. Enhanced protection in MHV-CXCL10-infected mice correlated with increased gamma interferon (IFN-γ) production by infiltrating natural killer (NK) cells within the brain and reduced liver pathology. To explore the underlying mechanisms associated with protection from disease in MHV-CXCL10-infected mice, the functional contributions of the NK cell-activating receptor NKG2D in host defense were examined. The administration of an NKG2D-blocking antibody to MHV-CXCL10-infected mice did not reduce survival, dampen IFN-γ production in the brain, or affect liver pathology. However, NKG2D neutralization increased viral titers within the liver, suggesting a protective role for NKG2D signaling in this organ. These data indicate that (i) CXCL10 enhances innate immune responses, resulting in protection from MHV-induced neurological and liver disease; (ii) elevated NK cell IFN-γ expression in the brain of MHV-CXCL10-infected mice occurs independently of NKG2D; and (iii) NKG2D signaling promotes antiviral activity within the livers of MHV-infected mice that is not dependent on IFN-γ and tumor necrosis factor alpha secretion.  相似文献   

7.
Coxsackievirus infection causes severe pancreatitis and myocarditis in humans, often leading to death in young or immunocompromised individuals. In susceptible strains of mice, coxsackievirus strain CB4 causes lethal hypoglycemia. To investigate the potential of gamma interferon (IFN-γ) in protection and clearance of the viral infection, IFN-γ knockout mice and transgenic (Tg) mice specifically expressing IFN-γ in their pancreatic β cells were infected with CB4. Lack of IFN-γ in mice normally resistant to CB4-mediated disease resulted in hypoglycemia and rapid death. However, expression of IFN-γ in the β cells of Tg mice otherwise susceptible to lethal infection allowed for survival and protected them from developing the accompanying hypoglycemia. While all the mice had high levels of viral replication in their pancreata and comparable tissue pathology following viral infection, the Tg mice had significantly lower levels of virus at the peak of infection, significantly higher numbers of activated macrophages before and after infection, and less damage to their acinar tissue. Additionally, despite having increased levels of inducible nitric oxide synthetase (iNOS) expression, treatment of Tg mice with the iNOS inhibitor aminoguanidine did not alter the level of protection afforded by IFN-γ expression. In conclusion, IFN-γ protects from lethal coxsackievirus infection by activating macrophages in an iNOS-independent manner.  相似文献   

8.
We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8+ T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8+ T cells in preventing DENV-induced CNS disease.  相似文献   

9.
Eradication of smallpox and discontinuation of the vaccination campaign resulted in an increase in the percentage of unvaccinated individuals, highlighting the need for postexposure efficient countermeasures in case of accidental or deliberate viral release. Intranasal infection of mice with ectromelia virus (ECTV), a model for human smallpox, is curable by vaccination with a high vaccine dose given up to 3 days postexposure. To further extend this protective window and to reduce morbidity, mice were vaccinated postexposure with Vaccinia-Lister, the conventional smallpox vaccine or Modified Vaccinia Ankara, a highly attenuated vaccine in conjunction with TLR3 or TLR9 agonists. We show that co-administration of the TLR3 agonist poly(I:C) even 5 days postexposure conferred protection, avoiding the need to increase the vaccination dose. Efficacious treatments prevented death, ameliorated disease symptoms, reduced viral load and maintained tissue integrity of target organs. Protection was associated with significant elevation of serum IFNα and anti-vaccinia IgM antibodies, modulation of IFNγ response, and balanced activation of NK and T cells. TLR9 agonists (CpG ODNs) were less protective than the TLR3 agonist poly(I:C). We show that activation of type 1 IFN by poly(I:C) and protection is achievable even without co-vaccination, requiring sufficient amount of the viral antigens of the infective agent or the vaccine. This study demonstrated the therapeutic potential of postexposure immune modulation by TLR activation, allowing to alleviate the disease symptoms and to further extend the protective window of postexposure vaccination.  相似文献   

10.
To investigate if bacterial persistence during TB drug treatment could be overcome by modulation of host immunity, we adapted a clinically-relevant model developed for the evaluation of new drugs and examined if immunotherapy with two adenoviral vaccines, Ad35-TBS (AERAS-402) and Ad26-TBS, could shorten therapy in mice. Even though immunotherapy resulted in strong splenic IFN-γ responses, no effect on bacterial replication in the lungs was seen. Multiplex assay analysis of lung samples revealed the absence of cytokine augmentation such as IFN-γ, TNF-α and IL-2, suggesting that immunization failed to induce immunity in the lungs. In this model, we show that IFN-γ levels were not associated with protection against disease relapse. The results obtained from our study raise questions regarding the traits of protective TB immunity that are relevant for the development of future immunotherapeutic and post-exposure vaccination strategies.  相似文献   

11.
MuMig (murine monokine induced by gamma interferon) and Crg-2 (cytokine responsive gene 2) are two murine chemokines of the CXC family that are induced by the interferons (IFNs): MuMig specifically by IFN-γ and Crg-2 by IFN-α, IFN-β, and IFN-γ. To investigate the biological roles of these chemokines, recombinant vaccinia viruses (rVVs) encoding either MuMig or Crg-2 were constructed. In vitro, the chemokine-encoding rVVs replicated to similar levels to the control virus. Athymic nude mice inoculated with 105 PFU or less of VV-HA-Mig or VV-HA–Crg-2 resolved the infection successfully whereas mice given a similar dose of the control virus VV-HA-TK died from generalized infection. At higher doses, there was mortality in all groups but death was significantly delayed in mice infected with either chemokine-encoding rVV compared with those infected with the control virus. Virus-encoded MuMig and Crg-2 enhanced the cytolytic activity of NK cells and splenic cellularity by two- to threefold and resulted in significant increases in mononuclear cell infiltration in the livers of mice. Using specific neutralizing or depleting antibodies, we have established that the control of rVV replication in athymic nude mice, as a consequence of virus-expressed MuMig and Crg-2, requires NK cells and IFN-α, IFN-β, and IFN-γ.  相似文献   

12.
During secondary immune responses to influenza virus, virus-specific T memory cells are a major source of gamma interferon (IFN-γ). We assessed the contribution of IFN-γ to heterologous protection against the A/WSN/33 (H1N1) virus of wild-type and IFN-γ−/− mice previously immunized with the A/HK/68 (H3N2) virus. The IFN-γ−/− mice displayed significantly reduced survival rates subsequent to a challenge with various doses of the A/WSN/33 virus. This was associated with an impaired ability of the IFN-γ−/− mice to completely clear the pulmonary virus by day 7 after the challenge, although significant reduction of the virus titers was noted. However, the IFN-γ−/− mice developed type A influenza virus cross-reactive cytotoxic T lymphocytes (CTLs) similar to the wild-type mice, as demonstrated by both cytotoxicity and a limiting-dilution assay for the estimation of CTL precursor frequency. The pulmonary recruitment of T cells in IFN-γ−/− mice was not dramatically affected, and the percentage of CD4+ and CD8+ T cells was similar to that of wild-type mice. The T cells from IFN-γ−/− mice did not display a significant switch toward a Th2 profile. Furthermore, the IFN-γ−/− mice retained the ability to mount significant titers of WSN and HK virus-specific hemagglutination-inhibiting antibodies. Together, these results are consistent with a protective role of IFN-γ during the heterologous response against influenza virus independently of the generation and local recruitment of cross-reactive CTLs.  相似文献   

13.
In the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic, no patients under 24 years of age died, while mortality was greater than 50% in those over 65 years. Greater than 90% of all deaths from influenza A virus (IAV) occur in the elderly (>65 years of age). To address this age-related susceptibility to SARS-CoV and IAV, we infected C57BL/6 (B6) mice with mouse-adapted SARS-CoV (MA15) or IAV (PR8), both of which cause severe disease in aged mice. Intranasal pretreatment of aged mice with poly(I·C) (a TLR3 agonist) and, to a lesser extent, CpG, R848, or lipopolysaccharide (TLR9, TLR7/8, or TLR4 agonists), provided a high level of protection [90% to 100% survival rate after poly(I·C) treatment] against lethal MA15 or IAV challenge and reduced pathological changes and virus loads in the lungs at early times after infection. Poly(I·C) pretreatment upregulated beta interferon (IFN-β), IFN-γ, IL-1β, and tumor necrosis factor (TNF) gene expression in the lungs. Intranasal pretreatment with IFN-β or IFN-γ but not IL-1β or TNF also protected aged mice, consistent with the notion that poly(I·C) pretreatment functioned, at least in part, by inducing IFN-β and IFN-γ. We also identified a potential cellular target for poly(I·C) by showing that treatment inhibited virus replication in primary human airway epithelial cells. These results suggest that intranasal poly(I·C) should be evaluated as a prophylactic agent in aged individuals at high risk for contracting SARS-CoV or IAV infections.  相似文献   

14.
Leptospirosis is a global zoonosis caused by pathogenic Leptospira, which can colonize the proximal renal tubules and persist for long periods in the kidneys of infected hosts. Here, we characterized the infection of C57BL/6J wild-type and Daf1−/− mice, which have an enhanced host response, with a virulent Leptospira interrogans strain at 14 days post-infection, its persistence in the kidney, and its link to kidney fibrosis at 90 days post-infection. We found that Leptospira interrogans can induce acute moderate nephritis in wild-type mice and is able to persist in some animals, inducing fibrosis in the absence of mortality. In contrast, Daf1−/− mice showed acute mortality, with a higher bacterial burden. At the chronic stage, Daf1−/− mice showed greater inflammation and fibrosis than at 14 days post-infection and higher levels at all times than the wild-type counterpart. Compared with uninfected mice, infected wild-type mice showed higher levels of IL-4, IL-10 and IL-13, with similar levels of α-smooth muscle actin, galectin-3, TGF-β1, IL-17, IFN-γ, and lower IL-12 levels at 90 days post-infection. In contrast, fibrosis in Daf1−/− mice was accompanied by high expression of α-smooth muscle actin, galectin-3, IL-10, IL-13, and IFN-γ, similar levels of TGF-β1, IL-12, and IL-17 and lower IL-4 levels. This study demonstrates the link between Leptospira-induced murine chronic nephritis with renal fibrosis and shows a protective role of Daf1.  相似文献   

15.
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.  相似文献   

16.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

17.
Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1(-/-)) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (μMT) produced no mortality. However, viral clearance in μMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1(-/-) with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1(-/-), and passive transfer of WT T cells to Rag1(-/-) animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with higher risk of complications after infection with poxvirus.  相似文献   

18.
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.  相似文献   

19.
In order to investigate if immune responses to the fusion (F) protein of respiratory syncytial virus (RSV) could be influenced by cytokines, recombinant vaccinia viruses (rVV) carrying both the F gene of RSV and the gene for murine interleukin-2 (IL-2), IL-4, or gamma interferon (IFN-γ) were constructed. In vitro characterization of rVV revealed that insertion of the cytokine gene into the VP37 locus of the vaccinia virus genome resulted in 100- to 1,000-fold higher expression than insertion of the same gene into the thymidine kinase (TK) locus. In comparison, only a two- to fivefold difference in the level of expression of the F protein was observed when the gene was inserted into either of these two loci. Mice vaccinated with rVV expressing the F protein and high levels of IL-2 or IFN-γ cleared rVV more rapidly than mice inoculated with a control rVV and developed only low levels of RSV-specific serum antibody. In addition, these recombinants were much less effective at priming RSV-specific memory cytotoxic T lymphocytes (CTL) and IFN-γ production by spleen cells than rVV expressing the F protein alone. In contrast, mice vaccinated with rVV expressing high levels of IL-4 showed signs of delayed rVV clearance. RSV-specific serum antibody responses were biased in favor of immunoglobulin G1 (IgG1) in these mice, as there was a significant reduction in IgG2a antibody responses compared with serum antibody responses in mice vaccinated with rVV expressing the F protein alone. However, vaccination with rVV expressing the F protein together with high levels of IL-4 did not alter the development of RSV-specific memory CTL or IFN-γ production by RSV-restimulated splenocytes.  相似文献   

20.
Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号