首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coevolution of virus and host is a process that emerges in persistent virus infections. Here we studied the coevolutionary development of coxsackievirus B3 (CVB3) and cardiac myocytes representing the major target cells of CVB3 in the heart in a newly established persistently CVB3-infected murine cardiac myocyte cell line, HL-1(CVB3). CVB3 persistence in HL-1(CVB3) cells represented a typical carrier-state infection with high levels (10(6) to 10(8) PFU/ml) of infectious virus produced from only a small proportion (approximately 10%) of infected cells. CVB3 persistence was characterized by the evolution of a CVB3 variant (CVB3-HL1) that displayed strongly increased cytotoxicity in the naive HL-1 cell line and showed increased replication rates in cultured primary cardiac myocytes of mouse, rat, and naive HL-1 cells in vitro, whereas it was unable to establish murine cardiac infection in vivo. Resistance of HL-1(CVB3) cells to CVB3-HL1 was associated with reduction of coxsackievirus and adenovirus receptor (CAR) expression. Decreasing host cell CAR expression was partially overcome by the CVB3-HL1 variant through CAR-independent entry into resistant cells. Moreover, CVB3-HL1 conserved the ability to infect cells via CAR. The employment of a soluble CAR variant resulted in the complete cure of HL-1(CVB3) cells with respect to the adapted virus. In conclusion, this is the first report of a CVB3 carrier-state infection in a cardiomyocyte cell line, revealing natural coevolution of CAR downregulation with CAR-independent viral entry in resistant host cells as an important mechanism of induction of CVB3 persistence.  相似文献   

2.
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets'' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.  相似文献   

3.
Enteroviral persistence has been implicated in the pathogenesis of several chronic human diseases, including dilated cardiomyopathy, insulin-dependent diabetes mellitus, and chronic inflammatory myopathy. However, these viruses are considered highly cytolytic, and it is unclear what mechanisms might permit their long-term survival. Here, we describe the generation of a recombinant coxsackievirus B3 (CVB3) expressing the enhanced green fluorescent protein (eGFP), which we used to mark and track infected cells in vitro. Following exposure of quiescent tissue culture cells to either wild-type CVB3 or eGFP-CVB3, virus production was very limited but increased dramatically after cells were permitted to divide. Studies with cell cycle inhibitors revealed that cells arrested at the G(1) or G(1)/S phase could express high levels of viral polyprotein and produced abundant infectious virus. In contrast, both protein expression and virus yield were markedly reduced in quiescent cells (i.e., cells in G(0)) and in cells blocked at the G(2)/M phase. Following infection with eGFP-CVB3, quiescent cells retained viral RNA for several days in the absence of infectious virus production. Furthermore, RNA extracted from nonproductive quiescent cells was infectious when transfected into dividing cells, indicating that CVB3 appears to be capable of establishing a latent infection in G(0) cells, at least in tissue culture. Finally, wounding of infected quiescent cells resulted in viral protein expression limited to cells in and adjacent to the lesion. We suggest that (i) cell cycle status determines the distribution of CVB3 during acute infection and (ii) the persistence of CVB3 in vivo may rely on infection of quiescent (G(0)) cells incapable of supporting viral replication; a subsequent change in the cell cycle status may lead to virus reactivation, triggering chronic viral and/or immune-mediated pathology in the host.  相似文献   

4.
In order to identify organ and cellular targets of persistent enterovirus infection in vivo, immunocompetent mice (SWR/J, H-2q) were inoculated intraperitoneally with coxsackievirus B3 (CVB3). By use of in situ hybridization for the detection of enteroviral RNA, we show that CVB3 is capable of inducing a multiorgan disease. During acute infection, viral RNA was visualized at high levels in the heart muscle, pancreas, spleen, and lymph nodes and at comparably low levels in the central nervous system, thymus, lung, and liver. At later stages of the disease, the presence of enteroviral RNA was found to be restricted to the myocardium, spleen, and lymph nodes. To characterize infected lymphoid cells during the course of the disease, enteroviral RNA and cell-specific surface antigens were visualized simultaneously in situ in spleen tissue sections. In acute infection, the majority of infected spleen cells, which are located primarily at the periphery of lymph follicles, were found to express the CD45R/B220+ phenotype of pre-B and B cells. Whereas viral RNA was also detected in certain CD4+ helper T cells and Mac-1+ macrophages, no enteroviral genomes were identified in CD8+ cytotoxic/suppressor T cells. Later in disease, the localization of enteroviral RNA revealed a persistent type of infection of B cells within the germinal centers of secondary follicles. In addition, detection of the replicative viral minus-strand RNA intermediate provided evidence for virus replication in lymphoid cells of the spleen during the course of the disease. These data indicate that immune cells are important targets of CVB3 infection, providing a noncardiac reservoir for viral RNA during acute and persistent myocardial enterovirus infection.  相似文献   

5.
Male and female BALB/c mice differ dramatically in susceptibility to myocarditis subsequent to coxsackievirus B3 (CVB3) infection. CVB3 infection of male mice results in substantial inflammatory cell infiltration of the myocardium, and virus-immune lymphocytes from these animals give predominantly a Th1 cell phenotypic response, as determined by predominant immunoglobulin G2a isotypic antibody production and elevated numbers of gamma interferon and interleukin-2 (IL-2)-producing CD4+ T lymphocytes. Females infected with the same virus give predominantly a Th2 cell phenotypic response, as determined by preferential immunoglobulin G1 antibody isotypic responses and increased precursor frequencies of IL-4- and IL-5-producing CD4+ T cells. Treatment of females with testosterone or males with estradiol prior to infection alters subsequent Th subset differentiation, suggesting that the sex-associated hormones have either a direct or indirect effect on CD4+ lymphocyte responses in this model. Treatment of females with 0.1 mg of monoclonal antibody to IL-4 reduces precursor frequencies of IL-4-producing CD4+ T cells and increases frequencies of gamma interferon-producing cells. This treatment also enhances myocardial inflammation, indicating a correlation between Th1-like cell responses and pathogenicity in CVB3 infection. The Th2-like cell may regulate Th1 cell activation. Adoptive transfer of T lymphocytes from CVB3-infected female mice into male animals suppresses the development of myocarditis in the recipients. Treatment of the female donors with monoclonal antibodies to either CD3, CD4, or IL-4 molecules abrogates suppression.  相似文献   

6.
Kim SM  Park JH  Chung SK  Kim JY  Hwang HY  Chung KC  Jo I  Park SI  Nam JH 《Journal of virology》2004,78(24):13479-13488
Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family, is the most common human pathogen associated with myocarditis and idiopathic dilated cardiomyopathy. We found upregulation of the cysteine-rich protein gene (cyr61) after CVB3 infection in HeLa cells with a cDNA microarray approach, which is confirmed by Northern blot analysis. It is also revealed that the extracellular amount of Cyr61 protein was increased after CVB3 infection in HeLa cells. cyr61 is an early-transcribed gene, and the Cyr61 protein is secreted into the extracellular matrix. Its function is related to cell adhesion, migration, and neuronal cell death. Here, we show that activation of the cyr61 promoter by CVB3 infection is dependent on JNK activation induced by CVB3 replication and viral protein expression in infected cells. To explore the role of Cyr61 protein in infected HeLa cells, we transiently overexpressed cyr61 and infected HeLa cells with CVB3. This increased CVB3 growth in the cells and promoted host cell death by viral infection, whereas down-expression of cyr61 with short interfering RNA reduced CVB3 growth and showed resistance to cell death by CVB3 infection. In conclusion, we have demonstrated a new role for cyr61 in HeLa cells infected with CVB3, which is associated with the cell death induced by virus infection. These data thus expand our understanding of the physiological functions of cyr61 in virus-induced cell death and provide new insights into the cellular factors involved.  相似文献   

7.
The induction of apoptosis during coxsackievirus B3 (CVB3) infection is well documented. In order to study whether the inhibition of apoptosis has an impact on CVB3 replication, the pan-caspase inhibitor Z-VAD-FMK was used. The decreased CVB3 replication is based on reduced accumulation of both viral RNA and viral proteins. These effects are due to an inhibitory influence of Z-VAD-FMK on the proteolytic activity of the CVB3 proteases 2A and 3C, which was demonstrated by using the target protein poly(A)-binding protein (PABP). The antiviral effect of the structurally different pan-caspase inhibitor Q-VD-OPH was independently of the viral protease inhibition and resulted in suppression of virus progeny production and impaired release of newly produced CVB3 from infected cells. A delayed release of cytochrome c into the cytoplasm was detected in Q-VD-OPH-treated CVB3-infected cells pointing to an involvement of caspases in the initial steps of mitochondrial membrane-permeabilization.  相似文献   

8.
9.
Clinical and laboratory investigations have demonstrated the involvement of viruses and bacteria as potential causative agents in cardiovascular disease and have specifically found coxsackievirus B3 (CVB3) to be a leading cause. Experimental data indicate that cytokines are involved in controlling CVB3 replication. Therefore, recombinant CVB3 (CVB3rec) variants expressing the T-helper-1 (T(H)1)-specific gamma interferon (IFN-gamma) or the T(H)2-specific interleukin-10 (IL-10) as well as the control virus CVB3(muIL-10), which produce only biologically inactive IL-10, were established. Coding regions of murine cytokines were cloned into the 5' end of the CVB3 wild type (CVB3wt) open reading frame and were supplied with an artificial viral 3Cpro-specific Q-G cleavage site. Correct processing releases active cytokines, and the concentration of IFN-gamma and IL-10 was analyzed by enzyme-linked immunosorbent assay and bioassays. In mice, CVB3wt was detectable in pancreas and heart tissue, causing massive destruction of the exocrine pancreas as well as myocardial inflammation and heart cell lysis. Most of the CVB3wt-infected mice revealed virus-associated symptoms, and some died within 28 days postinfection. In contrast, CVB3rec variants were present only in the pancreas of infected mice, causing local inflammation with subsequent healing. Four weeks after the first infection, surviving mice were challenged with the lethal CVB3H3 variant, causing casualties in the CVB3wt- and CVB3(muIL-10)-infected groups, whereas almost none of the CVB3(IFN-gamma)- and CVB3(IL-10)-infected mice died and no pathological disorders were detectable. This study demonstrates that expression of immunoregulatory cytokines during CVB3 replication simultaneously protects mice against a lethal disease and prevents virus-caused tissue destruction.  相似文献   

10.
Huber S  Shi C  Budd RC 《Journal of virology》2002,76(13):6487-6494
Fas/Fas ligand (FasL) interactions regulate disease outcome in coxsackievirus B3 (CVB3)-induced myocarditis. MRL(+/+) mice infected with CVB3 develop severe myocarditis, a dominant CD4(+) Th1 (gamma interferon [IFN-gamma(+)]) response to the virus, and a predominance of gammadelta T cells in the myocardial infiltrates. MRL lpr/lpr and MRL gld/gld mice, which lack normal expression of Fas and express a mutated FasL, respectively, have minimal myocarditis and show a dominant CD4(+) Th2 (interleukin-4 [IL-4(+)]) phenotype to CVB3. Spleen cells from virus-infected wild-type, lpr, and gld animals proliferate equally to virus in vitro. Adoptive transfer of gammadelta T cells from hearts of CVB3-infected MRL(+/+) mice (FasL(+)) into infected MRL gld/gld recipients (FasL(-)/Fas(+)) restores both disease susceptibility and Th1 cell phenotype. However, transfer of these cells into MRL lpr/lpr recipients (FasL(+)/Fas(-)) did not promote myocarditis and the viral response remained Th2 biased. This paralleled the expression of very high surface levels of FasL by myocardial gammadelta T cells, as well as their propensity to selectively lyse Th2 virus-specific CD4(+) T cells. These results demonstrate that Fas/FasL interactions conferred by gammadelta T cells on lymphocyte subpopulations may regulate the cytokine response to CVB3 infection and pathogenicity.  相似文献   

11.
The coxsackievirus group B (CVB) of the genus Enterovirus and the species human enterovirus B is a nonenveloped virus containing a single-stranded positive-sense RNA genome. Coxsackievirus has icosahedral symmetry and four capsid proteins, VP1, VP2, VP3, and VP4. Specific antibodies against each viral protein are prerequisites for various studies. In this study, we developed seven peptide-derived antibodies directed against coxsackievirus VP1 (NO1-NO5), VP2 (B3), and VP3 (GL3). We developed a type-specific antibody (NO1) and broadly cross-reactive antibodies (NO3 and NO5) to VP1. Anti-VP2 and anti-VP3 antibodies (B3 and GL3, respectively) are also cross-reactive to human enterovirus B such as CVB and echoviruses. Their sensitivities and reactivities are likely to be better than those of the commercial VP1 monoclonal antibody (MAb). The dot-blot analysis also showed that NO5 against VP1 is able to detect less than 1 microg [2x10(6) plaque-forming unit (pfu) of CVB3] of viruses, suggesting that it could be used to develop a diagnostic kit that can directly detect human enterovirus B. The antibodies produced here may allow us to undertake several studies, such as those involving viral trafficking, expression kinetics, and the roles of viral proteins in infection, and the development of diagnostic kits.  相似文献   

12.
In order to study cellular and viral determinants of pathogenicity, interactions between coxsackievirus B3 (CVB3) replication and cellular protein tyrosine phosphorylation were investigated. During CVB3 infection of HeLa cells, distinct proteins become phosphorylated on tyrosine residues, as detected by the use of antiphosphotyrosine Western blotting. Two proteins of 48 and 200 kDa showed enhanced tyrosine phosphorylation 4 to 5 h postinfection (p.i.), although virus-induced inhibition of cellular protein synthesis had already occurred 3 to 4 h p.i. Subcellular fractionation experiments revealed distinct localization of tyrosine-phosphorylated proteins of 48 and 200 kDa in the cytosol and membrane fractions of infected cells, respectively. In addition, in Vero cells infected with CVB3, echovirus (EV)11, or EV12, increased tyrosine phosphorylation of a 200-kDa protein was detected 6 h p.i. Herbimycin A, a specific inhibitor of Src-like protein tyrosine kinases, was shown to inhibit virus-induced tyrosine phosphorylations and to reduce the production of progeny virions. In contrast, in cells treated with the inhibitors staurosporine and calphostin C, the synthesis of progeny virions was not affected. Immunoprecipitation experiments suggested that the tyrosine-phosphorylated 200-kDa protein in CVB3-infected cells is of cellular origin. In summary, these investigations have begun to unravel the effect of CVB3 as well as EV11 and EV12 replication on cellular tyrosine phosphorylation and support the importance of tyrosine phosphorylation events for effective virus replication. Such cellular phosphorylation events triggered in the course of enterovirus infection may enhance virus replication.  相似文献   

13.
Infections by coxsackievirus B3 (CVB3) have previously been shown to cause acute and chronic myocarditis characterized by a heavy mononuclear leukocyte infiltration and myocyte necrosis. Because clinical and experimental evidence suggested that cardiac damage may result from immunologic rather than viral mechanisms, we examined in this study the in vitro interaction of CVB3 with human monocytes. CVB3 was capable of infecting freshly harvested monocytes as revealed by immunofluorescence and release of infectious virus particles. Virus infection did not reduce monocyte viability but, on the contrary, enhanced spreading and adherence. In a dose-dependent manner, CVB3 stimulated the release of cytokines from monocytes. Whereas a potent production of TNF-alpha, IL-1 beta, and IL-6 was dependent on exposure to infectious CVB3, IFN release was also induced by UV-inactivated virus. On a molecular level, CVB3 stimulated cytokine gene expression as shown by a marked TNF-alpha, IL-1 beta, and IL-6 mRNA accumulation. Supernatants of CVB3-infected monocytes displayed cytotoxic activity against Girardi heart cells which could be abrogated by an anti-TNF-alpha antiserum. These data suggest that CVB3-induced cytokine release from monocytes may participate in virus-induced organ damage such as myocarditis, which may either occur by a direct cytotoxicity of cytokines or by activation of cytotoxic lymphocytes.  相似文献   

14.
Rapid detection of infectious viruses is of central importance for public health risk assessment. By directly visualizing newly synthesized viral RNA with molecular beacons (MBs), we have developed a generalized method for the rapid and sensitive detection of infectious viruses from cell culture. An MB, CVB1, specifically targeting the 5′ noncoding region of the enterovirus genome was designed and synthesized. Introduction of MB CVB1 into permeabilized cells highly infected with coxsackievirus B6 resulted in brightly fluorescent cells that can be easily visualized with a fluorescence microscope. In contrast, no detectable signal was observed with noninfected cells or with nonspecific MBs. The number of fluorescent cells also increased in a dose-responsive manner, enabling the direct quantification of infectious viral dosages by direct counting of fluorescent foci. As little as 1 PFU of infectious coxsackievirus B6 was detected within 6 h postinfection. When combined with nuclease-resistant MBs, this method could be useful not only for the real-time detection of infectious viruses but is also useful to study the life cycle of viral processing in vivo.  相似文献   

15.
To determine whether interferon gamma (IFN-γ) can be used as a biomarker of exposure to viral pathogens, 12-week-old BALB/c mice were injected intraperitoneally with coxsackievirus B3 (CVB3) or coxsackievirus B4 (CVB4) diluted in sterilized phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infection, mouse spleen cells were harvested and assayed for the release of IFN-γ by memory T cells after in vitro stimulation with viral antigens, phytohemagglutinin (PHA), and PBS, respectively. The level of IFN-γ was examined by an antibody-capture enzyme-linked immunosorbent assay (ELISA). A marked increase in the level of IFN-γ was observed when memory T cells from CVB3-infected mice were incubated with CVB3 virus, but not with CVB4 or PBS. Conversely, memory T cells from mice infected by CVB4 were not stimulated to produce IFN-γ when they were incubated with CVB3 and PBS, but did significantly produce IFN-γ when stimulated with CVB4. T cells from mice injected with PBS did not release IFN-γ after stimulation with CVB3 or CVB4. However, these T cells did release IFN-γ after stimulation with PHA. Our results demonstrated that IFN-γ produced by memory T cells is virus-specific and may have use as a biomarker in viral exposure studies. The results of this study may be extended to the study of infection by pathogens that are capable of inducing cell-mediated immune response in humans. Disclaimer: The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication.  相似文献   

16.
Tong  Lei  Qiu  Ye  Wang  Hui  Qu  Yunyue  Zhao  Yuanbo  Lin  Lexun  Wang  Yan  Xu  Weizhen  Zhao  Wenran  He  Hongyan  Zhao  Guangze  Zhang  Mary H.  Yang  Decheng  Ge  Xingyi  Zhong  Zhaohua 《中国病毒学》2019,34(6):618-630
The roles of lnc RNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used coxsackievirus B3(CVB3), a typical enterovirus, as a model to investigate the expression profiles and functional roles of lnc RNAs in enterovirus infection. We profiled lnc RNAs and m RNA expression in CVB3-infected He La cells by lnc RNA-m RNA integrated microarrays. As a result, 700 differentially expressed lnc RNAs(431 up-regulated and 269 down-regulated) and665 differentially expressed m RNAs(299 up-regulated and 366 down-regulated) were identified in CVB3 infection. Then we performed lnc RNA-m RNA integrated pathway analysis to identify potential functional impacts of the differentially expressed m RNAs, in which lnc RNA-m RNA correlation network was built. According to lnc RNA-m RNA correlation, we found that XLOC-001188, an lnc RNA down-regulated in CVB3 infection, was negatively correlated with NFAT5 m RNA,an anti-CVB3 gene reported previously. This interaction was supported by q PCR detection following si RNA-mediated knockdown of XLOC-001188, which showed an increase of NFAT5 m RNA and a reduction of CVB3 genomic RNA. In addition, we observed that four most significantly altered lnc RNAs, SNHG11, RP11-145 F16.2, RP11-1023 L17.1 and RP11-1021 N1.2 share several common correlated genes critical for CVB3 infection, such as BRE and IRF2 BP1. In all, our studies reveal the alteration of lnc RNA expression in CVB3 infection and its potential influence on CVB3 replication,providing useful information for future studies of enterovirus infection.  相似文献   

17.
Rapid detection of infectious viruses is of central importance for public health risk assessment. By directly visualizing newly synthesized viral RNA with molecular beacons (MBs), we have developed a generalized method for the rapid and sensitive detection of infectious viruses from cell culture. An MB, CVB1, specifically targeting the 5' noncoding region of the enterovirus genome was designed and synthesized. Introduction of MB CVB1 into permeabilized cells highly infected with coxsackievirus B6 resulted in brightly fluorescent cells that can be easily visualized with a fluorescence microscope. In contrast, no detectable signal was observed with noninfected cells or with nonspecific MBs. The number of fluorescent cells also increased in a dose-responsive manner, enabling the direct quantification of infectious viral dosages by direct counting of fluorescent foci. As little as 1 PFU of infectious coxsackievirus B6 was detected within 6 h postinfection. When combined with nuclease-resistant MBs, this method could be useful not only for the real-time detection of infectious viruses but is also useful to study the life cycle of viral processing in vivo.  相似文献   

18.
19.
Yue Y  Gui J  Ai W  Xu W  Xiong S 《PloS one》2011,6(3):e18186

Background

Myocarditis is an inflammation of the myocardium that often follows the enterovirus infections, with coxsackievirus B3 (CVB3) being the most dominant etiologic agent. We and other groups previously reported that chemokine IP-10 was significantly induced in the heart tissue of CVB3-infected mice and contributed to the migration of massive inflammatory cells into the myocardium, which represents one of the most important mechanisms of viral myocarditis. To evaluate the direct effect of IP-10 on the inflammatory responses in CVB3 myocarditis, herein an IP-10 mutant deprived of chemo-attractant function was introduced into mice to antagonize the endogenous IP-10 activity, and its therapeutic effect on CVB3-induced myocarditis was evaluated.

Methodology/Principal Findings

The depletion mutant pIP-10-AT, with an additional methionine after removal of the 5 N-terminal amino acids, was genetically constructed and intramuscularly injected into BALB/c mice after CVB3 infection. Compared with vector or no treatment, pIP-10-AT treatment had significantly reduced heart/body weight ratio and serum CK-MB level, increased survival rate and improved heart histopathology, suggesting an ameliorated myocarditis. This therapeutic effect was not attributable to an enhanced viral clearance, but to a blunted Th1 immune response, as evidenced by significantly decreased splenic CD4+/CD8+IFN-γ+ T cell percentages and reduced myocardial Th1 cytokine levels.

Conclusion/Significance

Our findings constitute the first preclinical data indicating that interfering in vivo IP-10 activity could ameliorate CVB3 induced myocarditis. This strategy may represent as a new therapeutic approach in treating viral myocarditis.  相似文献   

20.
Amino acid exchanges in the virus capsid protein VP1 allow the coxsackievirus B3 variant PD (CVB3 PD) to replicate in decay accelerating factor (DAF)-negative and coxsackievirus-adenovirus receptor (CAR)-negative cells. This suggests that molecules other than DAF and CAR are involved in attachment of this CVB3 variant to cell surfaces. The observation that productive infection associated with cytopathic effect occurred in Chinese hamster ovary (CHO-K1) cells, whereas heparinase-treated CHO-K1 cells, glucosaminoglycan-negative pgsA-745, heparan sulfate (HS)-negative pgsD-677, and pgsE-606 cells with significantly reduced N-sulfate expression resist CVB3 PD infection, indicates a critical role of highly sulfated HS. 2-O-sulfate-lacking pgsF-17 cells represented the cell line with minimum HS modifications susceptible for CVB3 PD. Inhibition of virus replication in CHO-K1 cells by polycationic compounds, pentosan polysulfate, lung heparin, and several intestinal but not kidney HS supported the hypothesis that CVB3 PD uses specific modified HS for entry. In addition, recombinant human hepatocyte growth factor blocked CVB3 PD infection. However, CAR also mediates CVB3 PD infection, because this CVB3 variant replicates in HS-lacking but CAR-bearing Raji cells, infection could be prevented by pretreatment of cells with CAR antibody, and HS-negative pgsD-677 cells transfected with CAR became susceptible for CVB3 PD. These results demonstrate that the amino acid substitutions in the viral capsid protein VP1 enable CVB3 PD to use specific modified HS as an entry receptor in addition to CAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号