首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell adhesion requires nanometer scale membrane alignment to allow contact between adhesion receptors. Little quantitative information is presently available on this important biological process. Here we present an interference reflection microscopic study of the initial interaction between monocytic THP-1 cells and adhesive surfaces, with concomitant determination of cell deformability, using micropipette aspiration, and adhesiveness, using a laminar flow assay. We report that 1), during the first few minutes after contact, cells form irregular-shaped interaction zones reaching approximately 100 micro m(2) with a margin extension velocity of 0.01-0.02 micro m/s. This happens before the overall cell deformations usually defined as spreading. 2), These interference reflection microscopic-detected zones represent bona fide adhesion inasmuch as cells are not released by hydrodynamic forces. 3), Alignment is markedly decreased but not abolished by microfilament blockade with cytochalasin or even cell fixation with paraformaldehyde. 4), In contrast, exposing cells to hypotonic medium increased the rate of contact extension. 5), Contacts formed in presence of cytochalasin, after paraformaldehyde fixation or in hypotonic medium, were much more regular-shaped than controls and their extension matched cell deformability. 6), None of the aforementioned treatments altered adhesiveness to the surface. It is concluded that adhesive forces and passive membrane deformations are sufficient to generate initial cell alignment to adhesive surfaces, and this process is accelerated by spontaneous cytoskeletally-driven membrane motion.  相似文献   

2.
The initial stages of spreading of a suspended cell onto a substrate under the effect of (specific or nonspecific) adhesion exhibit a universal behavior, which is cell-type independent. We show that this behavior is governed only by cell-scale phenomena. This can be understood if the main retarding force that opposes cell adhesion is of mechanical origin, that is, dissipation occurring during the spreading. By comparing several naive models that generate different patterns of dissipation, we show by numerical simulation that only dissipation due to the deformation of the actin cortex is compatible with the experimental observations. This viscous-like dissipation corresponds to the energetic cost of rearranging the cytoskeleton, and is the trace of all dissipative events occurring in the cell cortex during the early spreading, such as the binding and unbinding of cross-linkers and molecular friction.  相似文献   

3.
The eukaryotic cell develops organelles to sense and respond to the mechanical properties of its surroundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop. We review evidence for the importance of the edge of the cell-extracellular matrix adhesion area in the aggregation of mechanosensors and develop a theoretical model for the clustering of mechanosensors into nascent focal adhesions on this contact ring. To study the spatial patterns arising on this topological feature, we use a one-dimensional lattice model with a nearest-neighbor interaction between individual integrin-mediated mechanosensors. We find the effective Ginzburg-Landau free energy for this model and determine the spectrum of spatial modes as the cell spreads and increases its contact area with the substrate. To test our model, we compare its predictions with measured distributions of paxillin in spreading fibroblasts.  相似文献   

4.
The actin cytoskeleton plays a crucial role for the spreading of cells, but is also a key element for the structural integrity and internal tension in cells. In fact, adhesive cells and their actin stress fiber–adhesion system show a remarkable reorganization and adaptation when subjected to external mechanical forces. Less is known about how mechanical forces alter the spreading of cells and the development of the actin–cell-matrix adhesion apparatus. We investigated these processes in fibroblasts, exposed to uniaxial cyclic tensile strain (CTS) and demonstrate that initial cell spreading is stretch-independent while it is directed by the mechanical signals in a later phase. The total temporal spreading characteristic was not changed and cell protrusions are initially formed uniformly around the cells. Analyzing the actin network, we observed that during the first phase the cells developed a circumferential arc-like actin network, not affected by the CTS. In the following orientation phase the cells elongated perpendicular to the stretch direction. This occurred simultaneously with the de novo formation of perpendicular mainly ventral actin stress fibers and concurrent realignment of cell-matrix adhesions during their maturation. The stretch-induced perpendicular cell elongation is microtubule-independent but myosin II-dependent. In summary, a CTS-induced cell orientation of spreading cells correlates temporary with the development of the acto-myosin system as well as contact to the underlying substrate by cell-matrix adhesions.  相似文献   

5.
Gradient distribution of bio‐adhesive proteins can regulate multiple cellular processes, including adhesion, growth, and migration. The ability to control the cell function by changing the surface density of immobilized ligands has become increasingly important in design of implantable medical devices and tissue regenerating scaffolds. Recent techniques in fabrication of substrates with controlled surface properties allow the examination of cell sensitivity to a wide range of adhesion gradients. Understanding the mechanisms by which cells sense and respond to these directional cues warrants a quantitative assessment of macroscopic cellular response to the surface gradients, supported by predictive theoretical models. This article presents a theoretical basis to examine the effect of ligand gradients on cellular adhesion, using an equilibrium thermodynamic model. The model facilitates a systematic investigation of the complex interplay of cell–substrate specific adhesions, non‐specific repulsions, and membrane elasticity. This purely mechanistic model predicts a biphasic dependence between the extent of cell spreading and its position across the gradient substrate. Biotechnol. Bioeng. 2010;105: 172–183. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
McGrath JL 《Current biology : CB》2007,17(10):R357-R358
A eukaryotic cell spreads over a substrate in distinct stages, with the earliest events characterized by passive adhesion and cell deformation. Recent work suggests a common physical mechanism can explain the early stages of cell spreading for a wide range of cell types and substrates.  相似文献   

7.
The temporal dependence of cytoskeletal remodelling on cell-cell contact in HepG2 cells has been established here. Cell-cell contact occurred in an ultrasound standing wave trap designed to form and levitate a 2-D cell aggregate, allowing intercellular adhesive interactions to proceed, free from the influences of solid substrata. Membrane spreading at the point of contact and change in cell circularity reached 50% of their final values within 2.2 min of contact. Junctional F-actin increased at the interface but lagged behind membrane spreading, reaching 50% of its final value in 4.4 min. Aggregates had good mechanical stability after 15 min in the trap. The implication of this temporal dependence on the sequential progress of adhesion processes is discussed. These results provide insight into how biomimetic cell aggregates with some liver cell functions might be assembled in a systematic, controlled manner in a 3-D ultrasound trap.  相似文献   

8.
The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes.  相似文献   

9.

Background

Adhesion dependent mechanisms are increasingly recognized to be important for a wide range of biological processes, diseases and therapeutics. This has led to a rising demand of pharmaceutical modulators. However, most currently available adhesion assays are time consuming and/or lack sensitivity and reproducibility or depend on specialized and expensive equipment often only available at screening facilities. Thus, rapid and economical high-content screening approaches are urgently needed.

Results

We established a fully open source high-content screening method for identifying modulators of adhesion. We successfully used this method to detect small molecules that are able to influence cell adhesion and cell spreading of Swiss-3T3 fibroblasts in general and/or specifically counteract Nogo-A-Δ20-induced inhibition of adhesion and cell spreading. The tricyclic anti-depressant clomipramine hydrochloride was shown to not only inhibit Nogo-A-Δ20-induced cell spreading inhibition in 3T3 fibroblasts but also to promote growth and counteract neurite outgrowth inhibition in highly purified primary neurons isolated from rat cerebellum.

Conclusions

We have developed and validated a high content screening approach that can be used in any ordinarily equipped cell biology laboratory employing exclusively freely available open-source software in order to find novel modulators of adhesion and cell spreading. The versatility and adjustability of the whole screening method will enable not only centers specialized in high-throughput screens but most importantly also labs not routinely employing screens in their daily work routine to investigate the effects of a wide range of different compounds or siRNAs on adhesion and adhesion-modulating molecules.  相似文献   

10.
Changes in vascular endothelial (VE)-cadherin-mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin-mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells.  相似文献   

11.
Influence of cell deformation on leukocyte rolling adhesion in shear flow   总被引:9,自引:0,他引:9  
Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.  相似文献   

12.
In order to form and maintain a protective barrier for photoreceptors, the retinal pigment epithelium relies on integrin signaling and related pathways to form adhesion complexes, undergo cell spreading, and establish a confluent cellular monolayer. Polyamines are multifunctional polycations that are essential for cell attachment and spreading, although their exact mechanisms of action are as yet unclear. We report new immunocytochemical evidence suggesting that in the cells of retinal pigment epithelium and also the intestinal epithelium, polyamines are present in a population of intracellular vesicles that appear transiently during initial stages of cell spreading. In newly attached cells with minimal spreading, the vesicles are seen near the nucleus, whereas in more highly spread cells, the vesicles are localized to the plasma membrane, near, but not precisely co-localized with an enzyme marker for adhesion complexes, focal adhesion kinase. We also observe pronounced nuclear staining in newly attached cells that have not spread, whereas this staining is decreased in cells that have spread. Nuclear staining has been previously reported in other cell types and has been attributed to DNA binding of polyamines, which is known to stabilize chromatin structure. We hypothesize that the appearance of polyamine vesicles near focal adhesions of cells undergoing attachment and spreading may reflect the mechanism by which polyamine pools are targeted to appropriate interaction sites necessary for the assembly of adhesion complexes. Alternatively, the vesicles could represent the mechanism by which polyamines are removed from the nucleus and possibly released from the cell.  相似文献   

13.
Many fundamental cell processes, such as angiogenesis, neurogenesis and cancer metastasis, are thought to be modulated by extracellular matrix stiffness. Thus, the availability of matrix substrates having well-defined stiffness profiles can be of great importance in biophysical studies of cell-substrate interaction. Here, we present a method to fabricate biocompatible hydrogels with a well defined and linear stiffness gradient. This method, involving the photopolymerization of films by progressively uncovering an acrylamide/bis-acrylamide solution initially covered with an opaque mask, can be easily implemented with common lab equipment. It produces linear stiffness gradients of at least 115 kPa/mm, extending from ∼1 kPa to 240 kPa (in units of Young''s modulus). Hydrogels with less steep gradients and narrower stiffness ranges can easily be produced. The hydrogels can be covalently functionalized with uniform coatings of proteins that promote cell adhesion. Cell spreading on these hydrogels linearly correlates with hydrogel stiffness, indicating that this technique effectively modifies the mechanical environment of living cells. This technique provides a simple approach that produces steeper gradients, wider rigidity ranges, and more accurate profiles than current methods.  相似文献   

14.
Spatial patterning of biochemical cues on the micro- and nanometer scale controls numerous cellular processes such as spreading, adhesion, migration, and proliferation. Using force microscopy we show that the lateral spacing of individual integrin receptor-ligand bonds determines the strength of cell adhesion. For spacings ≥90 nm, focal contact formation was inhibited and the detachment forces as well as the stiffness of the cell body were significantly decreased compared to spacings ≤50 nm. Analyzing cell detachment at the subcellular level revealed that rupture forces of focal contacts increase with loading rate as predicted by a theoretical model for adhesion clusters. Furthermore, we show that the weak link between the intra- and extracellular space is at the intracellular side of a focal contact. Our results show that cells can amplify small differences in adhesive cues to large differences in cell adhesion strength.  相似文献   

15.
A model system to study the control of cell adhesion by receptor-mediated specific forces, universal interactions, and membrane elasticity is established. The plasma membrane is mimicked by reconstitution of homophilic receptor proteins into solid supported membranes and, together with lipopolymers, into giant vesicles with the polymers forming an artificial glycocalix. The homophilic cell adhesion molecule contact site A, a lipid-anchored glycoprotein from cells of the slime mold Dictyostelium discoideum, is used as receptor. The success of the reconstitution, the structure and the dynamics of the model membranes are studied by various techniques including film balance techniques, micro fluorescence, fluorescence recovery after photobleaching, electron microscopy, and phase contrast microscopy. The interaction of the functionalized giant vesicles with the supported bilayer is studied by reflection interference contrast microscopy, and the adhesion strength is evaluated quantitatively by a recently developed technique. At low receptor concentrations adhesion-induced receptor segregation in the membranes leads to decomposition of the contact zone between membranes into domains of strong (receptor-mediated) adhesion and regions of weak adhesion while continuous zones of strong adhesion form at high receptor densities. The adhesion strengths (measured in terms of the spreading pressure S) of the various states of adhesion are obtained locally by analysis of the vesicle contour near the contact line in terms of elastic boundary conditions of adhesion: the balance of tensions and moments. The spreading pressure of the weak adhesion zones is S approximately 10(-9) J/m(2) and is determined by the interplay of gravitation and undulation forces whereas the spreading pressure of the tight adhesion domains is of the order S approximately 10(-6) J/m(2).  相似文献   

16.
We previously reported a novel interaction between v-Crk and myosin-1c, and demonstrated that this interaction is essential for cell migration, even in the absence of p130CAS. We here demonstrate a role for Crk-myosin-1c interaction in cell adhesion and spreading. Crk-knockout (Crk‑/‑) mouse embryo fibroblasts (MEFs) exhibited significantly decreased cell spreading and reduced Rac1 activity. A stroboscopic analysis of cell dynamics during cell spreading revealed that the cell-spreading deficiency in Crk‑/‑ MEFs was due to the short protrusion/retraction distances and long persistence times of membrane extensions. The low activity of Rac1 in Crk‑/‑ MEFs, which led to delayed cell spreading in these cells, is consistent with the observed defects in membrane dynamics. Reintroduction of v-Crk into Crk‑/‑ MEFs rescued these defects, restoring cell-spreading activity and membrane dynamics to Crk+/+ MEF levels, and normalizing Rac1 activity. Knockdown of myosin-1c by introduction of small interfering RNA resulted in a delay in cell spreading and reduced Rac1 activity to low levels, suggesting that myosin-1c also plays an essential role in cell adhesion and spreading. In addition, deletion of the v-Crk SH3 domain, which interacts with the myosin-1c tail, led to defects in cell spreading. Overexpression of the GFP-myosin-1c tail domain effectively inhibited the v-Crk-myosin-1c interaction and led to a slight decrease in cell spreading and cell surface area. Collectively, these findings suggest that the v-Crk-myosin-1c interaction, which modulates membrane dynamics by regulating Rac1 activity, is crucial for cell adhesion and spreading.  相似文献   

17.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

18.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

19.
A dynamical model for receptor-mediated cell adhesion to surfaces.   总被引:14,自引:11,他引:3       下载免费PDF全文
We present a dynamical model for receptor-mediated adhesion of cells in a shear field of viscous fluid to surfaces coated with ligand molecules complementary to receptors in the cell membrane. We refer to this model as the "point attachment model" because it considers the contact area between the cell and the surface to be a small, homogeneous region that mediates the initial attachment of the cell to the surface. Using a phase plane analysis of a system of nonlinear ordinary differential equations which govern the changes in free receptor density and bond density within the contact area with time, we can predict the conditions for which adhesion between the cell and the surface will take place. Whether adhesion occurs depends on values of dimensionless quantities that characterize the interaction of the cell and its receptors with the surface and its ligand, such as the bond formation rate, the receptor-ligand affinity, the fluid mechanical force, the receptor mobility, and the contact area. A key result is that there are two regimes in which different chemical and physical forces dominate: a rate-controlled high affinity regime and an affinity-controlled low-affinity regime. Many experimental observations can be explained by understanding which of these regimes is appropriate. We also provide simple approximate analytical solutions, relating adhesiveness to cell and surface properties as well as fluid forces, which allow convenient testing of model predictions by experiment.  相似文献   

20.
Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号