共查询到20条相似文献,搜索用时 11 毫秒
1.
Siew Hoon Sim Yichun Liu Dongling Wang Vidhya Novem Suppiah Paramalingam Sivalingam Tuck Weng Thong Eng Eong Ooi Gladys Tan 《PloS one》2009,4(10)
Background
Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei.Methodology and Principal Findings
Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFα, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-κB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides.Conclusions
Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection. 相似文献2.
The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20–40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freund''s adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated. 相似文献
3.
Caroline Sauer Sebastian Klobuch Wolfgang Herr Simone Thomas Bodo Plachter 《Journal of virology》2013,87(20):11287-11291
Dendritic cells play a central role in the immune control of human cytomegalovirus (HCMV) infection. This work aimed at investigating the impact of noninfectious, subviral dense bodies of HCMV on the maturation and activation of dendritic cells (DC). Treatment of immature DC with dense bodies led to the maturation of these cells and significantly increased their capacity for cytokine release and antigen presentation. Dense body-activated DC may thereby contribute to the development of antiviral immunity. 相似文献
4.
Tomoki Yoshikawa Terence E. Hill Naoko Yoshikawa Vsevolod L. Popov Cristi L. Galindo Harold R. Garner C. J. Peters Chien-Te Tseng 《PloS one》2010,5(1)
Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NF)κB, activator protein (AP)-1, and interferon regulatory factor (IRF)-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i.), resulting in the activation of many antiviral genes, including interferon (IFN)-β, -λs, inflammatory mediators, and many IFN-stimulated genes (ISGs). We also showed, for the first time, that IFN-β and IFN-λs were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS. 相似文献
5.
Lydia R. Durant Spyridon Makris Cornelia Maaike Voorburg Jens Loebbermann Cecilia Johansson Peter J. M. Openshaw 《Journal of virology》2013,87(20):10946-10954
During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3DTR mice (which allow specific conditional depletion of Foxp3+ T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4+ and CD8+ T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4+ T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease. 相似文献
6.
Neutralizing Monoclonal Antibodies Block Human Immunodeficiency Virus Type 1 Infection of Dendritic Cells and Transmission to T Cells 总被引:6,自引:2,他引:6
Sarah S. Frankel Ralph M. Steinman Nelson L. Michael Silvia Ratto Kim Nina Bhardwaj Melissa Pope Mark K. Louder Philip K. Ehrenberg Paul W. H. I. Parren Dennis R. Burton Hermann Katinger Thomas C. VanCott Merlin L. Robb Deborah L. Birx John R. Mascola 《Journal of virology》1998,72(12):9788-9794
Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC. DC were generated from CD14+ blood cells or obtained from cadaveric human skin. The MAbs prevented viral entry into purified DC and the ensuing productive infection in DC/T-cell cultures. When DC were first pulsed with HIV-1, MAbs blocked the subsequent transmission to unstimulated CD3+ T cells. Thus, neutralizing antibodies can block HIV-1 infection of DC and the cell-to-cell transmission of virus from infected DC to T cells. These data suggest that neutralizing antibodies could interrupt the initial events associated with mucosal transmission and regional spread of HIV-1. 相似文献
7.
Emily F. A. van ‘t Wout Annemarie van Schadewijk Ria van Boxtel Lucy E. Dalton Hanna J. Clarke Jan Tommassen Stefan J. Marciniak Pieter S. Hiemstra 《PLoS pathogens》2015,11(6)
Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. 相似文献
8.
Sanchari Bhattacharyya Pranveer Singh Ujjwal Rathore Mansi Purwar Denise Wagner Heather Arendt Joanne DeStefano Celia C. LaBranche David C. Montefiori Sanjay Phogat Raghavan Varadarajan 《The Journal of biological chemistry》2013,288(14):9815-9825
b12, one of the few broadly neutralizing antibodies against HIV-1, binds to the CD4 binding site (CD4bs) on the gp120 subunit of HIV-1 Env. Two small fragments of HIV-1 gp120, b121a and b122a, which display about 70% of the b12 epitope and include solubility-enhancing mutations, were designed. Bacterially expressed b121a/b122a were partially folded and could bind b12 but not the CD4bs-directed non-neutralizing antibody b6. Sera from rabbits primed with b121a or b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity in a TZM-bl assay against a 16-virus panel that included nine Tier 2 and 3 viruses as well as in a five-virus panel previously designed to screen for broad neutralization. Using a mean IC50 cut-off of 50, sera from control rabbits immunized with gp120 alone neutralized only one virus of the 14 non-Tier 1 viruses tested (7%), whereas sera from b121a- and b122a-immunized rabbits neutralized seven (50%) and twelve (86%) viruses, respectively. Serum depletion studies confirmed that neutralization was gp120-directed and that sera from animals immunized with gp120 contained lower amounts of CD4bs-directed antibodies than corresponding sera from animals immunized with b121a/b122a. Competition binding assays with b12 also showed that b121a/2a sera contained significantly higher amounts of antibodies directed toward the CD4 binding site than the gp120 sera. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals. 相似文献
9.
10.
Lei Pan Ruiqiang Weng Jinxia Zhang Jinsheng Wang Yong Tang Ning Deng 《International journal of peptide research and therapeutics》2014,20(4):565-574
Overexpression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and metastasis in tumors. VEGF/bFGF complex peptide (VBP3) was designed to elicit the body to produce both high titer anti-VEGF and anti-bFGF antibodies to inhibit tumor angiogenesis and tumor growth. BALB/c mice were immunized with the VEGF/bFGF complex peptide, and the immune responses were assayed. Splenocytes were separated from the immunized mice and the CD4, CD8 T cells and IFN-γ were assayed by Flow cytometry. The results showed that the VBP3 could effectively stimulate immune response in mice and resulted in the increase of CD4 and CD8 T cells. CD4+ T cells and CD8+ T cells were increased from 10.78 to 15.13 and 6.82 to 11.58 % respectively. Polyclonal antibodies purified from the VBP3 immunized mice showed good anti-proliferation function to lung cancer cells, and resulted in the decrease of phosphroylation level of Akt and Erk assayed by the Western-blot. Transwell assays showed that the migration of HUVEC cells was inhibited by the antibodies. The results revealed that the VBP3 have good immunogenicity and may be used as a vaccine for tumor therapy. 相似文献
11.
小反刍兽疫(PPR)是羊、骆驼等小反刍动物的一种急性、烈性、接触性A类传染病,发病率和致死率极高.目前,PPR在全球仍呈现区域性流行和多地散发势态.为探讨PPRV及N蛋白体外诱导山羊外周血单个核细胞(PBMCs)在不同时间对PBMCs免疫应答效应的影响.本研究将PPRVNigeria75/1疫苗毒(1 MOI)、重组N蛋白(10μg/mL)和RPMI 1640(阴性对照)体外刺激PBMCs 48h、72h、96h.采用CCK-8法检测PBMCs细胞增殖情况;qRT-PCR及ELISA检测炎症因子包括IL-1β、IL-6、IL-10、TNF-a和IFN-γ的mRNA表达水平及分泌情况;流式细胞术检测T细胞CD4+和CD8+的表达、及单核来源树突状细胞(DCs)表面分子CD40、CD86、CD80的表达、以及检测PPRV感染PBMCs引起的细胞凋亡.研究发现:与对照组相比,PPRV能够抑制PBMCs的体外增殖,显著促进炎症因子IL-1β、IL-6、IL-10、TNF-α、IFN-γ的表达(P<0.05).并且PPRV感染PBMCs产生细胞凋亡,促进CD4+T细胞和CD8+T细胞表达.另外PPRV体外刺激DCs,CD40、CD86、CD80的表达显著升高(P<0.05),提示PPRV具有刺激DCs细胞成熟与分化的功能.进一步研究发现PPRV N蛋白体外刺激PBMCs能引起与PPRV作用相同的免疫效应.本研究表明PPRV Nigeria75/1疫苗毒体外感染PBMCs主要引起炎症反应与细胞凋亡、促进单核来源DCs成熟与分化,并且N蛋白参与PPRV引起的各项免疫功能. 相似文献
12.
Jeanette Wagener Günther Weindl Piet W. J. de Groot Albert D. de Boer Susanne Kaesler Selvam Thavaraj Oliver Bader Daniela Mail?nder-Sanchez Claudia Borelli Michael Weig Tilo Biedermann Julian R. Naglik Hans Christian Korting Martin Schaller 《PloS one》2012,7(11)
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo. 相似文献
13.
为了提高PRRSV ORF5基因的免疫效力,对ORF5基因进行了改造,将CpG序列和通用型辅助性T淋巴细胞表位插入A表位与B表位之间,并对N33与N51位糖基化位点进行了点突变,获得改造的ORF5基因。在此基础上构建了由两个CMV启动子调控的共表达改造的ORF5(MORF5)与ORF6基因的真核表达质粒pcDNA-M5A-6A。经Western-blot与IFA验证真核质粒的体外表达后,免疫6周龄Balb/c小鼠,利用微量中和试验检测免疫后的中和抗体,利用MTT法检测免疫后淋巴细胞的增生情况,并与未改造ORF5基因真核表达质粒pcDNA-5A-6A、弱毒疫苗以及灭活疫苗的免疫效果进行比较。结果表明,pcDNA-M5A-6A不但能够刺激免疫小鼠在较短的时间内产生更高水平的中和抗体,而且可以诱导产生更强烈的T淋巴细胞增殖反应。所构建的共表达PRRSV改造的ORF5基因与ORF6基因的DNA疫苗pcDNA-M5A-6A,能够较好的诱发小鼠产生较高的特异性针对PRRSV的中和抗体和细胞免疫应答,为研究能够更好地防制PRRSV的新型疫苗提供了新的思路。 相似文献
14.
PRRSV NJ-a株ORF5基因A表位的修饰与糖基化位点的突变对其DNA疫苗免疫效力的影响 总被引:5,自引:1,他引:5
为了提高PRRSVORF5基因的免疫效力,对ORF5基因进行了改造,将CpG序列和通用型辅助性T淋巴细胞表位插入A表位与B表位之间,并对N33与N51位糖基化位点进行了点突变,获得改造的ORF5基因。在此基础上构建了由两个CMV启动子调控的共表达改造的ORF5(MORF5)与ORF6基因的真核表达质粒pcDNA-M5A-6A。经Western-blot与IFA验证真核质粒的体外表达后,免疫6周龄Balb/c小鼠,利用微量中和试验检测免疫后的中和抗体,利用MTT法检测免疫后淋巴细胞的增生情况,并与未改造ORF5基因真核表达质粒pcDNA-5A-6A、弱毒疫苗以及灭活疫苗的免疫效果进行比较。结果表明,pcDNA-M5A-6A不但能够刺激免疫小鼠在较短的时间内产生更高水平的中和抗体,而且可以诱导产生更强烈的T淋巴细胞增殖反应。所构建的共表达PRRSV改造的ORF5基因与ORF6基因的DNA疫苗pcDNA-M5A-6A,能够较好的诱发小鼠产生较高的特异性针对PRRSV的中和抗体和细胞免疫应答,为研究能够更好地防制PRRSV的新型疫苗提供了新的思路。 相似文献
15.
Nicolas Dauby Cristina Alonso-Vega Eduardo Suarez Amilcar Flores Emmanuel Hermann Marisol Córdova Tatiana Tellez Faustino Torrico Carine Truyens Yves Carlier 《PLoS neglected tropical diseases》2009,3(12)
Background
We previously showed that newborns congenitally infected with Trypanosoma cruzi (M+B+) display a strong type 1 parasite-specific T cell immune response, whereas uninfected newborns from T. cruzi-infected mothers (M+B−) are prone to produce higher levels of proinflammatory cytokines than control neonates (M−B−). The purpose of the present study was to determine if such fetal/neonatal immunological environments could alter the response to standard vaccines administered in early life.Methodology
Infants (6–7 months old) living in Bolivia, an area highly endemic for T. cruzi infection, and having received Bacillus Calmette Guerin (BCG), hepatitis B virus (HBV), diphtheria and tetanus vaccines, were enrolled into the M+B+, M+B−, M−B− groups mentioned above. The production of IFN-γ and IL-13, as markers of Th1 and Th2 responses respectively, by peripherical blood mononuclear cells stimulated with tuberculin purified protein derivative of Mycobacterium tuberculosis (PPD) or the vaccinal antigens HBs, diphtheria toxoid (DT) or tetanus toxoid (TT), as well as circulating levels of IgG antibodies against HBsAg, DT and TT were analyzed in infants. Cellular responses to the superantigen SEB were also monitored in M+B+, M+B−, M−B−infants and newborns.Principal Findings
M+B+ infants developed a stronger IFN-γ response to hepatitis B, diphtheria and tetanus vaccines than did M+B− and M−B− groups. They also displayed an enhanced antibody production to HBsAg. This was associated with a type 1-biased immune environment at birth, since cells of M+B+ newborns produced higher IFN-γ levels in response to SEB. M+B− infants produced more IFN-γ in response to PPD than the other groups. IL-13 production remained low and similar in all the three groups, whatever the subject''s ages or vaccine status.Conclusion
These results show that: i) both maternal infection with T. cruzi and congenital Chagas disease do not interfere with responses to BCG, hepatitis B, diphtheria and tetanus vaccines in the neonatal period, and ii) the overcoming of immunological immaturity by T. cruzi infection in early life is not limited to the development of parasite-specific immune responses, but also tends to favour type 1 immune responses to vaccinal antigens. 相似文献16.
17.
18.
Because they are the natural target for respiratory pathogens, primary human respiratory epithelial cells provide the ideal in vitro system for isolation and study of human respiratory viruses, which display a high degree of cell, tissue, and host specificity. Human coronavirus HKU1, first discovered in 2005, has a worldwide prevalence and is associated with both upper and lower respiratory tract disease in both children and adults. Research on HCoV-HKU1 has been difficult because of its inability to be cultured on continuous cell lines and only recently it was isolated from clinical specimens using primary human, ciliated airway epithelial cells. Here we demonstrate that HCoV-HKU1 can infect and be serially propagated in primary human alveolar type II cells at the air-liquid interface. We were not able to infect alveolar type I-like cells or alveolar macrophages. Type II alveolar cells infected with HCoV-HKU1 demonstrated formation of large syncytium. At 72 hours post inoculation, HCoV-HKU1 infection of type II cells induced increased levels of mRNAs encoding IL29,CXCL10, CCL5, and IL-6 with no significant increases in the levels of IFNβ. These studies demonstrate that type II cells are a target cell for HCoV-HKU1 infection in the lower respiratory tract, that type II alveolar cells are immune-competent in response to infection exhibiting a type III interferon and proinflammatory chemokine response, and that cell to cell spread may be a major factor for spread of infection. Furthermore, these studies demonstrate that human alveolar cells can be used to isolate and study novel human respiratory viruses that cause lower respiratory tract disease. 相似文献
19.
Jun Chen Yuk Fai Lau Elaine W. Lamirande Christopher D. Paddock Jeanine H. Bartlett Sherif R. Zaki Kanta Subbarao 《Journal of virology》2010,84(3):1289-1301
We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-α, IL-6, gamma interferon [IFN-γ], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8+ T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4+ T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4+ and CD8+ T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4+ but not CD8+ T cells in primary SARS-CoV infection in this model.The global outbreak of severe acute respiratory syndrome (SARS) in 2003 that infected more than 8,000 people in 29 countries across five continents, with 774 deaths reported by the World Health Organization (54), was caused by a highly contagious coronavirus designated SARS-CoV (33). The elderly were more likely to die from SARS-CoV infection than younger people (7), with a case-fatality rate of 50% in people older than 65 years (14, 53). Disease pathogenesis in SARS is complex, with multiple factors leading to severe pulmonary injury and dissemination of the virus to other organs. High viral load; systemic infection; a cytokine storm with high levels of CXCL10/IP-10, CCL3/MIP-1α, and CCL2/MCP-1; massive lung infiltration by monocytes and macrophages; and rapid depletion of T cells are hallmarks of SARS (5, 13, 15, 21, 28, 35). The role of neutralizing antibodies (Abs) in protection from SARS-CoV infection has been well documented. Virus-specific neutralizing Abs reduce viral load, protect against weight loss, and reduce histopathology in animal models (42, 47, 48). Although the role of type I interferons (IFNs) in the natural history of SARS is controversial (5, 9, 59), the innate defense system appears to be critical for controlling SARS-CoV replication in mice (23, 41). Mice lacking normal innate signaling due to STAT1 or MyD88 deficiency are highly susceptible to SARS-CoV infection. Virus-specific T-cell responses are present in convalescent patients with SARS (27, 55). However, little is known about the role of T cells in the acute phase of SARS.Several mouse models have been developed for the in vivo study of SARS pathogenesis. However, no single model accurately reproduces all aspects of the human disease. SARS-CoV replicates in the upper and lower respiratory tracts of 4- to 8-week-old mice and is cleared rapidly; infection is associated with transient mild pneumonitis, and cytokines are not detectable in the lungs (20, 42, 49). A SARS-CoV isolate that was adapted by serial passage in mice (MA-15) replicates to a higher titer and for a longer duration in the lungs than the unadapted (Urbani) virus and is associated with viremia and mortality in young mice (36), but the histologic changes in the lungs are caused by high titers of virus and cell death without significant infiltrates of inflammatory cells. The heightened susceptibility of elderly patients to SARS led us to develop a pneumonia model in 12- to 14-month-old (mo) BALB/c mice using the Urbani virus. In this model, pulmonary replication of virus was associated with signs of clinical illness and histopathological evidence of disease characterized by bronchiolitis, interstitial pneumonitis, diffuse alveolar damage, and fibrotic scarring (3), thus resembling SARS in the elderly. We evaluated the host response to SARS-CoV infection by examining the gene expression profile in the senescent mouse model and found a robust response to virus infection, with an increased expression of several immune response and cell-to-cell signaling genes, including those for tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), CCL2, CCL3, CXCL10, and IFN-γ (1).In this study, we characterize the cellular immune response to SARS-CoV infection in 12- to 14-mo BALB/c mice in terms of the protein and gene expression of inflammatory mediators, migration of inflammatory cells, and virus-specific T-cell responses in the lungs during the course of disease. We evaluated the role of T cells in disease pathogenesis and viral clearance by depleting T-cell subsets at the time of infection and found an important role for CD4+ T cells (but not CD8+ T cells) in primary infection with SARS-CoV in this model. 相似文献
20.
Syna Kuriakose Gift Lindsay Wieczorek Eric Sanders-Buell Michelle Zemil Sebastian Molnar Gina Donofrio Samantha Townsley Agnes L. Chenine Meera Bose Hung V. Trinh Brittani M. Barrows Somchai Sriplienchan Suchai Kitsiripornchai Sorachai Nitayapan Leigh-Anne Eller Mangala Rao Guido Ferrari Nelson L. Michael Julie A. Ake Shelly J. Krebs Merlin L. Robb Sodsai Tovanabutra Victoria R. Polonis 《Journal of virology》2023,97(2)