首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

2.
Understanding how animals allocate their foraging time is a central question in behavioural ecology. Intrinsic factors, such as body mass and size differences between sexes or species, influence animals’ foraging behaviour, but studies investigating the effects of individual differences in body mass and size within the same sex are scarce. We investigated this in chick‐rearing masked boobies Sula dactylatra, a species with reversed sexual dimorphism, through the simultaneous deployment of GPS and depth‐acceleration loggers to obtain information on foraging movements and activity patterns. Heavier females performed shorter trips closer to the colony than lighter females. During these shorter trips, heavier females spent higher proportions of their flight time flapping and less time resting on the water than lighter females did during longer trips. In contrast, body mass did not affect trip duration of males, however heavier males spent less time flapping and more time resting on the water than lighter males. This may occur as a result of higher flight costs associated with body mass and allow conservation of energy during locomotion. Body size (i.e. wing length) had no effect on any of the foraging parameters. Dive depths and dive rates (dives h?1) were not affected by body mass, but females dived significantly deeper than males, suggesting that other factors are important. Other studies demonstrated that females are the parent in charge of provisioning the chick, and maintain a flexible investment under regulation of their own body mass. Variation in trip length therefore seems to be triggered by body condition in females, but not in males. Consequently, shorter trips are presumably used to provision the chick, while longer trips are for self‐maintenance. Our findings underline the importance of accounting for the effects of body mass differences within the same sex, if sex‐specific foraging parameters in dimorphic species are being investigated.  相似文献   

3.
Consistent intra‐population variability in foraging behaviour is found among a wide range of taxa. Such foraging specialisations are common among marine vertebrates, yet it is not clear how individuals repeatedly locate prey or foraging sites at ocean‐wide scales. Using GPS and time‐depth loggers we studied the fine‐scale foraging behaviour of central‐place northern gannets Morus bassanus at two large colonies. First, we estimated the degree of consistency in individual foraging routes and sites across repeated trips. Second, we tested for individual differences in searching behaviour in response to environmental covariates using reaction norms, estimated from mixed effect models. Adult gannets tracked over multiple foraging trips showed repeatable between‐individual differences in terminal points and departure angles of foraging trips, but low repeatability in trip duration and trip length. Importantly, individual birds showed highly repeatable dive locations, with consistently different environmental conditions (such as copepod abundance), suggesting a high degree of foraging site specialisation. Gannets also showed between‐individual differences in searching behaviour along environmental gradients, such that individuals intensified searching under different conditions. Together these results suggest that widespread individual foraging consistency may represent specialisation and be linked with individual responses to environmental conditions. Such divergent searching behaviour could provide a mechanism by which consistent foraging behaviour arises and is maintained among animals that forage across large spatial scales.  相似文献   

4.
Individual niche variation is common within animal populations, and has significant implications for a wide range of ecological and evolutionary processes. However, individual niche differences may also temporally vary as a result of behavioural plasticity. While it is well understood how niche variation is affected by changes in resource availability, comparatively little is known about the extent to which individual niche differences may vary within the annual cycle due to internal drivers. Here, we assess how time- and energy-constraints imposed by incubating and brood rearing affect inter- and intra-individual variation in the foraging behaviour of lesser black-backed gulls, a generalist seabird with strong individual niche variation. To this end, we compared daily foraging trips of 22 breeding and 23 non-breeding GPS-tracked adult gulls from two colonies in the Southern Bight of the North Sea over the course of the breeding season. We find that breeding birds, unlike non-breeding ones, did indeed alter their foraging behaviour during the breeding season. Both sexes reduced their searching effort by increasingly revisiting earlier foraging locations, allowing for shorter and more frequent foraging trips. Breeding females also showed pronounced shifts in their habitat use and strongly specialised on urbanised foraging habitats throughout the breeding season. Hence, while individual variation in habitat use remained largely consistent within non-breeders and in breeding males, individual variation among breeding females almost completely disappeared. Female lesser black-backed gulls are on average smaller, and therefore often outcompeted by males for the most profitable food sources. The temporal specialisation on spatially reliable anthropogenic food sources during breeding hence suggests a complex interplay between intrinsic competitive constraints, resource reliability and shifting time- and energy budges in shaping temporal dynamics in individual niche variation within our study population.  相似文献   

5.
Rapid development of foraging ability is critical for phocids. In northern elephant seals Mirounga angustirostris , juvenile survivorship is low compared with adults and foraging difficulties are potentially associated with increased mortality. At Año Nuevo, California, foraging behavior of nine juvenile females during their third foraging migration and five juvenile females on their fourth foraging migration were documented using a variety of commercially available and custom time depth recorders. Foraging success, diving ability, time at depth, bouts of behavior and body composition changes were compared between trips to sea. There were no significant differences in foraging success measured as mass gain between the third and fourth trips to sea. There were differences in how energy was deposited between lean and adipose tissue compartments. Diving ability developed between trips to sea, reflected in significant increases in depth, dive duration and bottom time. Development also occurred within trips to sea. Depth, dive duration and bottom time increased with time at sea. Aerobic capacity appears to increase between the third and fourth trip, with a significantly increased percentage of total time submerged and a significantly lower diving rate. All juveniles on the fourth trip and four out of nine juveniles on the third trip followed marked diel patterns, foraging deep during the day and shallow at night. Like adults, juveniles appeared to stay primarily aerobic with surface intervals independent of dive durations. These results confirm that female juvenile northern elephant seals undergo important developmental changes in foraging behavior between the third and fourth trip, but these changes do not significantly impact foraging success.  相似文献   

6.
Reversed sexual dimorphism (RSD) may be related to different roles in breeding investment and/or foraging, but little information is available on foraging ecology. We studied the foraging behaviour and parental investment by male and female masked boobies, a species with RSD, by combining studies of foraging ecology using miniaturised activity and GPS data loggers of nest attendance, with an experimental study where flight costs were increased. Males attended the chick more often than females, but females provided more food to the chick than males. Males and females foraged during similar periods of the day, had similar prey types and sizes, diving depths, durations of foraging trips, foraging zones and ranges. Females spent a smaller proportion of the foraging trip sitting on the water and had higher diving rate than males, suggesting higher foraging effort by females. In females, trip duration correlated with mass at departure, suggesting a flexible investment through control by body mass. The experimental study showed that handicapped females and female partners of handicapped males lost mass compared to control birds, whereas there was no difference for males. These results indicate that the larger female is the main provisioner of the chick in the pair, and regulates breeding effort in relation to its own body mass, whereas males have a fixed investment. The different breeding investment between the sexes is associated with contrasting foraging strategies, but no clear niche differentiation was observed. The larger size of the females may be advantageous for provisioning the chick with large quantities of energy and for flexible breeding effort, while the smaller male invests in territory defence and nest guarding, a crucial task when breeding at high densities. In masked boobies, division of labour appears to be maximal during chick rearing—the most energy-demanding period—and may be related to evolution of RSD.  相似文献   

7.
Individual specialisation has been identified in an increasing number of animal species and populations. However, in some groups, such as terrestrial mammals, it is difficult to disentangle individual niche variation from spatial variation in resource availability. In the present study, we investigate individual variation in the foraging niche of the European badger (Meles meles), a social carnivore that lives in a shared group territory, but forages predominantly alone. Using stable isotope analysis, we distinguish the extent to which foraging variation in badgers is determined by social and spatial constraints and by individual differences within groups. We found a tendency for individual badgers within groups to differ markedly and consistently in their isotope values, suggesting that individuals living with access to the same resources occupied distinctive foraging niches. Although sex had a significant effect on isotope values, substantial variation within groups occurred independently of age and sex. Individual differences were consistent over a period of several months and in some instances were highly consistent across the two years of the study, suggesting long-term individual foraging specialisations. Individual specialisation in foraging may, therefore, persist in populations of territorial species not solely as a result of spatial variation in resources, but also arising from individuals selecting differently from the same available resources. Although the exact cause of this behaviour is unknown, we suggest that specialisation may occur due to learning trade-offs which may limit individual niche widths. However, ecological factors at the group level, such as competition, may also influence the degree of specialisation.  相似文献   

8.
Substantial variation in foraging strategies can exist within populations, even those typically regarded as generalists. Specializations arise from the consistent exploitation of a narrow behavioral, spatial or dietary niche over time, which may reduce intraspecific competition and influence adaptability to environmental change. However, few studies have investigated whether behavioral consistency confers benefits at the individual and/or population level. While still recovering from commercial sealing overexploitation, Australian fur seals (AUFS; Arctocephalus pusillus doriferus) represent the largest marine predator biomass in south‐eastern Australia. During lactation, female AUFS adopt a central‐place foraging strategy and are, thus, vulnerable to changes in prey availability. The present study investigated the population‐level repeatability and individual consistency in foraging behavior of 34 lactating female AUFS at a south‐east Australian breeding colony between 2006 and 2019. Additionally, the influence of individual‐level behavioral consistency on indices of foraging success and efficiency during benthic diving was determined. Low to moderate population‐level repeatability was observed across foraging behaviors, with the greatest repeatability in the mean bearing and modal dive depth. Individual‐level consistency was greatest for the proportion of benthic diving, total distance travelled, and trip duration. Indices of benthic foraging success and efficiency were positively influenced by consistency in the proportion of benthic diving, trip duration and dive rate but not influenced by consistency in bearing to most distal point, dive depth or foraging site fidelity. The results of the present study provide evidence of the benefits of consistency for individuals, which may have flow‐on effects at the population level.  相似文献   

9.
Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey—flying fishes and flying squids—of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding investment observed in boobies, and are likely to be involved in the evolution and maintenance of RSD.  相似文献   

10.
While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they all followed the same general dispersion pattern throughout the year.  相似文献   

11.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

12.

Background

Divergence in trophic niche between the sexes may function to reduce competition between the sexes (“intersexual niche partitioning hypothesis”), or may be result from differential selection among the sexes on maximizing reproductive output (“sexual selection hypothesis”). The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning.

Methodology/Principal Findings

Comparative analysis of trophic morphology (the chelicerae) and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism) in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles.

Conclusions/Significance

Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex-differences in the route to successful reproduction where females are selected to maximize energy intake and fecundity, while males switch from foraging to invest in mating effort.  相似文献   

13.
Sexual differences in food provisioning rates of monomorphic seabirds are well known but poorly understood. Here, we address three hypotheses that attempt to explain female-biased food provisioning in common guillemots Uria aalge : (1) males spend more time in nest defence, (2) females have greater foraging efficiency, and (3) males allocate a greater proportion of foraging effort to self-maintenance. We found that males spent no more time with chicks than females but made longer trips and travelled further from the colony. There was extensive overlap between sexes in core foraging areas, indicating that females were not excluding males from feeding opportunities close to the colony. However, as a result of their longer trips, the total foraging areas of males were much greater than those of females. There was no difference between sexes in overall dive rate per hour at sea, in behaviour during individual dives or in a number of other measures of foraging efficiency including the frequency, depth and duration of dives and the dive: pause ratio during the final dive bout of each trip, which was presumably used by both sexes to obtain prey for the chick. These data strongly suggest that sexes did not differ in their ability to locate and capture prey. Yet males made almost twice as many dives per trip as females, suggesting that males made more dives than females for their own benefit. These results support the hypothesis that female-biased food provisioning arose from a difference between sexes in the allocation of foraging effort between parents and offspring, in anticipation of a prolonged period of male-only post-fledging care of the chick, and not from differences in foraging efficiency or time spent in nest defence.  相似文献   

14.
The present study investigates relationships among size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis . Maximal running speed, body mass, snout-vent length, tail length, fore- and hind limb spans and thigh muscle mass were measured in 68 field-fresh individuals spanning the entire ontogenetic size range (1.3 48 g). Relative lengths of both foreand hind limbs decrease with increasing body mass (= negative allometry), whereas relative tail length and thigh muscle mass increase with body mass (= positive allometry). Repeatable and significant differences in maximal running speed exist among individuals. Maximal running speed scales as (body mass)0.161, and 59% of the variation in maximal speed was related to body mass. Based on the results of the present and previous studies, data on scaling of body proportions alone appear inadequate to infer scaling relationships of functional characters such as top speed.
Surprisingly, individual variation in maximal speed is not related to individual variation in shape (relative limb, tail and body lengths). These components of overall shape are not independent; individuals tended to have either relatively long or relatively short limbs, tails and bodies for their body mass. Even the significant difference in multivariate shape between adult males and females has no measurable consequences for maximal speed. Speeds of field-fresh animals did not vary on a seasonal basis, and eight weeks of captivity had no effect on maximal running speeds. Gravid females and long-term (obese) captive lizards were both approximately 12% slower than field-fresh lizards.  相似文献   

15.
Giant petrels ( Macronectes spp.) are the most sexually dimorphic of all seabirds. We used satellite-tracking and mass change during incubation to investigate the influence of sexual size dimorphism, in terms of the intersexual food competition hypothesis, on foraging and fasting strategies of northern giant petrels at South Georgia. Females foraged at sea whereas males foraged mainly on the South Georgia coast, scavenging on seal and penguin carcasses. Foraging effort (flight speed, distance covered, duration of foraging trips) was greater for females than for males. In contrast, foraging efficiency (proportionate daily mass gain while foraging) was significantly greater for males than for females. Females were significantly closer to the desertion mass threshold than males and could not compensate for the mass loss during the incubation fast while foraging, suggesting greater incubation costs for females than for males. Both sexes regulated the duration and food intake of foraging trips depending on the depletion of the body reserves. In males the total mass gain was best explained by mass at departure and body size. We suggest that sexual segregation of foraging strategies arose from size-related dominance at carcasses, promoting sexual size dimorphism. Our results indicate that sex-specific differences in fasting endurance, contest competition over food and flight metabolic rates are key elements in maintenance of sexual size dimorphism, segregating foraging strategies and presumably reducing competition between sexes.  相似文献   

16.
1. We studied chick diet in a known-age, sexed population of a long-lived seabird, the Brünnich's guillemot (Uria lomvia), over 15 years (N = 136; 1993-2007) and attached time-depth-temperature recorders to examine foraging behaviour in multiple years (N = 36; 2004-07). 2. Adults showed specialization in prey fed to offspring, described by multiple indices calculated over 15 years: 27% of diet diversity was attributable to among-individual variation (within-individual component of total niche width = 0.73); average similarity of an individual's diet to the overall diet was 65% (mean proportional similarity between individuals and population = 0.65); diet was significantly more specialized than expected for 70% of individuals (mean likelihood = 0.53). These indices suggest higher specialization than the average for an across-taxa comparison of 49 taxa. 3. Foraging behaviour varied along three axes: flight time, dive depth and dive shape. Individuals showed specialized individual foraging behaviour along each axis. These foraging strategies were reflected in the prey type delivered to their offspring and were maintained over scales of hours to years. 4. Specialization in foraging behaviour and diet was greater over short time spans (hours, days) than over long time spans (years). Regardless of sex or age, the main component of variation in foraging behaviour and chick diet was between individuals. 5. Plasma stable isotope values were similar across years, within a given individual, and variance was low relative to that expected from prey isotope values, suggesting adult diet specialized across years. Stable isotope values were similar among individuals that fed their nestlings similar prey items and there was no difference in trophic level between adults and chicks. We suggest that guillemots specialize on a single foraging strategy regardless of whether chick-provisioning and self-feeding. With little individual difference in body mass and physiology, specialization likely represents learning and memorizing optimal feeding locations and behaviours. 6. There was no difference in survival or reproductive success between specialists and generalists, suggesting these are largely equivalent strategies in terms of evolutionary fitness, presumably because different strategies were advantageous at different levels of prey abundance or predictability. The development of individual specialization may be an important precursor to diversification among seabirds.  相似文献   

17.
Competition for food resources can result in spatial and dietary segregation among individuals from the same species. Few studies have looked at such segregations with the combined effect of sex and age in species with short foraging ranges. In this study we examined the 3D spatial use of the environment in a species with a limited foraging area. We equipped 26 little penguins (Eudyptula minor) of known age, sex, and breeding output with GPS (location) and accelerometer (body acceleration and dive depth) loggers. We obtained dietary niche information from the isotopic analysis of blood tissue. We controlled for confounding factors of foraging trip length and food availability by sampling adults at guard stage when parents usually make one-day trips. We observed a spatial segregation between old (>11 years old) and middle-aged penguins (between 5 and 11 years old) in the foraging area. Old penguins foraged closer to the shore, in shallower water. Despite observing age-specific spatial segregation, we found no differences in the diving effort and foraging efficiency between age classes and sexes. Birds appeared to target similar prey types, but showed age-specific variation in their isotopic niche width. We hypothesize that this age-specific segregation was primarily determined by a “cohort effect” that would lead individuals sharing a common life history (i.e. having fledged and dispersed around the same age) to forage preferentially together or to share similar foraging limitations.  相似文献   

18.
Because endocrine mechanisms are thought to mediate behavioral responses to changes in the environment, examining these mechanisms is essential for understanding how long-lived seabirds adjust their foraging decisions to contrasting environmental conditions in order to maximize their fitness. In this context, the hormone corticosterone (CORT) deserves specific attention because of its major connections with locomotor activities. We examined for the first time the relationships between individual CORT levels and measurements of foraging success and behavior using satellite tracking and blood sampling from wandering albatrosses (Diomedea exulans) before (pretrip CORT levels) and after (posttrip CORT levels) foraging trips during the incubation period. Plasma CORT levels decreased after a foraging trip, and the level of posttrip CORT was negatively correlated with individual foraging success, calculated as total mass gain over a foraging trip. Pretrip CORT levels were not linked to time spent at sea but were positively correlated with daily distance traveled and maximum range at sea. In this study, we were able to highlight the sensitivity of CORT levels to variation in energy intake, and we showed for the first time that individual CORT levels can be explained by variation in foraging success. Relationships between pretrip CORT levels and daily distance traveled and maximum range were independent of pretrip body mass, suggesting that slight elevations in pretrip CORT levels might facilitate locomotor activity. However, because both foraging behavior and pretrip CORT levels could be affected by individual quality, future experimental studies including manipulation of CORT levels are needed to test whether CORT can mediate foraging decisions according to foraging conditions.  相似文献   

19.
Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin (Eudyptes chrysocome) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1–3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour.  相似文献   

20.
Our aim was to describe the free-ranging diving pattern and to determine the location of foraging of pregnant female southern elephant seals, Mirounga leonina , from Peninsula Valdes, Argentina. This colony is unusual in two respects: it is removed from deep water by a broad shallow shelf (345–630 km wide), and colony numbers have been increasing in recent years in contrast to numbers from other southern hemisphere colonies that are stable or in decline. Microprocessor controlled, geolocation-time-depth recorders were deployed on four females, recording a total of 15,836 dives (270 dive days) during the period February to April, 1992. Departing seals crossed the continental shelf quickly (54–5–62–1 h) and did not show signs of foraging until reaching deep water, due east of the colony in the South Atlantic Ocean. Diving was virtually continuous (93% of the time underwater) with overall mean (±S.D.) rates of 2.5±0.2 dives/h, mean dive durations of 22.8 ± 7.1 min (maximum dive duration = 79 min) with 1.6±0.6min surface intervals between dives, and dive depths of 431±193m (maximum dive depth = 1,072 m). The diving pattern of females from Patagonia is similar to that of seals from colonies where numbers are decreasing (Macquarie stock) or are stable (South Georgia Island). Our subjects did not, however, feed in or south of the Antarctic Polar Front, or in cold waters along the Antarctic coast, where seals from declining or stable colonies forage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号