首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtia is a congenital deformity where the external ear is underdeveloped. Genetic investigations have identified many susceptibility genes of microtia-related syndromes. However, no causal genes were reported for isolated microtia, the main form of microtia. We conducted a genome-wide linkage analysis on a 5-generation Chinese pedigree with isolated bilateral microtia. We identified a suggestive linkage locus on 4p15.32–4p16.2 with parametric LOD score of 2.70 and nonparametric linkage score (Zmean) of 12.28 (simulated occurrence per genome scan equal to 0.46 and 0.47, respectively). Haplotype reconstruction analysis of the 4p15.32–4p16.2 region further confined the linkage signal to a 10-Mb segment located between rs12505562 and rs12649803 (9.65–30.24 cM; 5.54–15.58 Mb). Various human organ developmental genes reside in this 10-Mb susceptibility region, such as EVC, EVC2, SLC2A9, NKX3-2, and HMX1. The coding regions of three genes, EVC known for cartilage development and NKX3-2, HMX1 involved in microtia, were selected for sequencing with 5 individuals from the pedigree. Of the 38 identified sequence variants, none segregates along with the disease phenotype. Other genes or DNA sequences of the 10-Mb region warrant for further investigation. In conclusion, we report a susceptibility locus of isolated microtia, and this finding will encourage future studies on the genetic basis of ear deformity.  相似文献   

2.
Microtia is a congenital malformation of the external ear that can be observed in many species including sheep. However, the genetic basis of microtia still remains unclear. Here, a GWAS was conducted to investigate the genetic basis underlying microtia. A total of 55 samples from 26 microtia and 29 normal animals were genotyped with Illumina OvineHD BeadChip. The strongest significant SNP was identified on OAR6, approximating the evolutionarily conserved region of the HMX1 gene, which is related to congenital malformations of the external ear in other species such as cattle and rats. Sequencing an evolutionarily conserved region surrounding HMX1 revealed a duplication of 76 bp, which is concordant with microtia, suggesting a dominant inheritance mode. Identification of this causal mutation in the HMX1 gene indicates the role of this particular gene in the development of the external ear and provides a genetic marker for selection against microtia.  相似文献   

3.
Stenocarpella maydis causes a fungal dry-rot of maize ears and is associated with diplodiosis, a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. There have been no reports of Stenocarpella metabolites in maize crop residues. Chemical investigations of S. maydis-infected grain from ears exhibiting different levels of ear rot severity following a 2010 field outbreak of Stenocarpella ear rot in Illinois led to the detection of diplodiatoxin and chaetoglobosins M and O as major components in the ethyl acetate extracts by LC-MS. Following post-harvest moist incubation of the S. maydis-infected grain, the amounts of each compound increased (approx. tenfold) and chaetoglobosin K was detected as a dominant toxin. In separate 1H NMR-based analyses, the neurotoxin diplonine was detected as a minor component in methanol extracts of S. maydis-infected grain as well as cultures of S. maydis isolates from Midwest corn. Proline betaine (=stachydrine) and glycine betaine were also detected in these extracts as major components. This constitutes the first report of chaetoglobosin M, chaetoglobosin O, proline betaine, or glycine betaine from S. maydis, and the first record of diplodiatoxin, diplonine, proline betaine, glycine betaine, or chaetoglobosins M, O, or K being associated with a natural field outreak of S. maydis ear rot.  相似文献   

4.
Selection signals of Korean cattle might be attributed largely to artificial selection for meat quality. Rapidly increased intragenic markers of newly annotated genes in the bovine genome would help overcome limited findings of genetic markers associated with meat quality at the selection signals in a previous study. The present study examined genetic associations of marbling score (MS) with intragenic nucleotide variants at selection signals of Korean cattle. A total of 39 092 nucleotide variants of 407 Korean cattle were utilized in the association analysis. A total of 129 variants were selected within newly annotated genes in the bovine genome. Their genetic associations were analyzed using the mixed model with random polygenic effects based on identical-by-state genetic relationships among animals in order to control for spurious associations produced by population structure. Genetic associations of MS were found (P<3.88×10−4) with six intragenic nucleotide variants on bovine autosomes 3 (cache domain containing 1, CACHD1), 5 (like-glycosyltransferase, LARGE), 16 (cell division cycle 42 binding protein kinase alpha, CDC42BPA) and 21 (snurportin 1, SNUPN; protein tyrosine phosphatase, non-receptor type 9, PTPN9; chondroitin sulfate proteoglycan 4, CSPG4). In particular, the genetic associations with CDC42BPA and LARGE were confirmed using an independent data set of Korean cattle. The results implied that allele frequencies of functional variants and their proximity variants have been augmented by directional selection for greater MS and remain selection signals in the bovine genome. Further studies of fine mapping would be useful to incorporate favorable alleles in marker-assisted selection for MS of Korean cattle.  相似文献   

5.
Dairy cattle breeds have been subjected over the last fifty years to intense artificial selection towards improvement of milk production traits. In this study, we performed a whole genome scan for differentiation using 42,486 SNPs in the three major French dairy cattle breeds (Holstein, Normande and Montbéliarde) to identify the main physiological pathways and regions which were affected by this selection. After analyzing the population structure, we estimated FST within and across the three breeds for each SNP under a pure drift model. We further considered two different strategies to evaluate the effect of selection at the genome level. First, smoothing FST values over each chromosome with a local variable bandwidth kernel estimator allowed identifying 13 highly significant regions subjected to strong and/or recent positive selection. Some of them contained genes within which causal variants with strong effect on milk production traits (GHR) or coloration (MC1R) have already been reported. To go further in the interpretation of the observed signatures of selection we subsequently concentrated on the annotation of differentiated genes defined according to the FST value of SNPs localized close or within them. To that end we performed a comprehensive network analysis which suggested a central role of somatotropic and gonadotropic axes in the response to selection. Altogether, these observations shed light on the antagonism, at the genome level, between milk production and reproduction traits in highly producing dairy cows.  相似文献   

6.
7.
Variations in ear size can be observed in livestock such as sheep; however, the genetic basis of variable ear size in sheep is still poorly understood. To investigate causative genes associated with ear size in sheep, a genome‐wide association study was performed in 115 adult Duolang sheep with different‐sized floppy ears using the Ovine Infinium HD BeadChip. We found 38 significant SNPs at the genome‐wide or chromosome‐wise 5% significance level after Bonferroni correction. The most significant association (= 1.61 × 10?6) was found at SNP rs402740419, located in the DCC gene, which plays a critical role in ear development. Also, we observed two additional significant SNPs, rs407891215 in PTPRD and rs407769095 in SOX5, both of which are functionally associated with ear developmental processes. Our results are useful for future sheep breeding and provide insights into the genetic basis of ear size development in sheep and other livestock.  相似文献   

8.
Ear morphology is an important determinant of sheep breeds. It includes different variable traits such as ear size and erectness, suggesting a polygenic architecture. Here, we performed a comprehensive genome-wide analysis to identify regions under selection for ear morphology in 515 sheep from 17 breeds fixed for diverse ear phenotypes using 34k SNP genotyping data. GWASs for two ear type traits, size and erectness, revealed a single genome-wide significant association on ovine chromosome 3. The derived marker alleles were enriched in sheep with large and/or floppy ears. The GWAS signal harboured the MSRB3 gene encoding methionine sulphoxide reductase B3, which has already been found to be associated with different ear types in other species. We attempted whole-genome resequencing to identify causal variant(s) within a 1 Mb interval around MSRB3. This experiment excluded major copy number variants in the interval, but failed to identify a compelling candidate causal variant. Fine-mapping suggested that the causal variant for large floppy ears most likely resides in a 175 kb interval downstream of the MSRB3 coding region.  相似文献   

9.

Background

Recent developments in sequencing technology have facilitated widespread investigations of genomic variants, including continuous stretches of homozygous genomic regions. For cattle, a large proportion of these runs of homozygosity (ROH) are likely the result of inbreeding due to the accumulation of elite alleles from long-term selective breeding programs. In the present study, ROH were characterized in four cattle breeds with whole genome sequence data and the distribution of predicted functional variants was detected in ROH regions and across different ROH length classes.

Results

On average, 19.5 % of the genome was located in ROH across four cattle breeds. There were an average of 715.5 ROH per genome with an average size of ~750 kbp, ranging from 10 (minimum size considered) to 49,290 kbp. There was a significant correlation between shared short ROH regions and regions putatively under selection (p < 0.001). By investigating the relationship between ROH and the predicted deleterious and non-deleterious variants, we gained insight into the distribution of functional variation in inbred (ROH) regions. Predicted deleterious variants were more enriched in ROH regions than predicted non-deleterious variants, which is consistent with observations in the human genome. We also found that increased enrichment of deleterious variants was significantly higher in short (<100 kbp) and medium (0.1 to 3 Mbp) ROH regions compared with long (>3 Mbp) ROH regions (P < 0.001), which is different than what has been observed in the human genome.

Conclusions

This study illustrates the distribution of ROH and functional variants within ROH in cattle populations. These patterns are different from those in the human genome but consistent with the natural history of cattle populations, which is confirmed by the significant correlation between shared short ROH regions and regions putatively under selection. These findings contribute to understanding the effects of inbreeding and probably selection in shaping the distribution of functional variants in the cattle genome.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1715-x) contains supplementary material, which is available to authorized users.  相似文献   

10.
In the mouse, development of the lateral semicircular canal of the inner ear is sensitive to Bmp4 heterozygosity. In the C57BL6 background 30% of the heterozygotes display circling behavior, 66% have a specific defect in the vestibular part of the inner ear, namely the constriction, interruption or absence of the lateral semicircular canal. Only mice having both ears affected display circling behavior. In the (C57BL6xCBA)N1 background, the penetrance of the canal phenotype is greatly reduced, and bilateral lateral canal defect is not sufficient to induce circling. We found association of the canal phenotype with the genotype of markers on chromosome 14 and 4, co-localizing with Ecs and Eclb identified in the Ecl mouse with similar lateral canal defects. Candidate genes to contain the causal mutation are Bmp4 on chromosome 14, and Rere on chromosome 4.  相似文献   

11.
Signaling from rhombomeres 5 and 6 of the hindbrain is thought to be important for inner ear patterning. In Noggin −/− embryos, the gross anatomy of the inner ear is distorted and malformed, with cochlear duct outgrowth and coiling most affected. We attributed these defects to a caudal shift of the rhombomeres caused by the shortened body axis and the kink in the neural tube. To test the hypothesis that a caudal shift of the rhombomeres affects inner ear development, we surgically generated chicken embryos in which rhombomeres 5 and 6 were similarly shifted relative to the position of the inner ears, as in Noggin mutants. All chicken embryos with shifted rhombomeres showed defects in cochlear duct formation indicating that signaling from rhombomeres 5 and 6 is important for cochlear duct patterning in both chicken and mice. In addition, the size of the otic capsule is increased in Noggin −/− mutants, which most likely is due to unopposed BMP signaling for chondrogenesis in the peri-otic mesenchyme.  相似文献   

12.
Six solid colors occur in Highland cattle: black, dun, silver dun and red, yellow, and white. These six coat colors are explained by a non‐epistatic interaction of the genotypes at the MC1R and PMEL genes. A three base pair deletion in the PMEL gene leading to the deletion of a leucine from the signal peptide is observed in dilute‐colored Highland cattle (c.50_52delTTC, p.Leu18del). The mutant PMEL allele acts in a semi‐dominant manner. Dun Galloway cattle also have one copy of the deletion allele, and silver dun Galloway cattle have two copies. The presence of two adjacent leucine residues at the site of this deletion is highly conserved in human, horse, mouse and chicken as well as in cattle with undiluted coat colors. Highland and Galloway cattle thus exhibit a similar dose‐dependent dilution effect based on the number of PMEL :c.50_51delTTC alleles, as Charolais cattle with PMEL :c.64G>A alleles. The PMEL :c.64G>A allele was not found in Highland or Galloway cattle.  相似文献   

13.
Electrophoretic and activity variants have been observed for stomach and testis aldehyde dehydrogenases, respectively, among inbred strains of the house mouse (Mus musculus). Genetic evidence was obtained for two new loci encoding these isozymes (designated Ahd-4 and Ahd-6, respectively, for the stomach and testis isozymes) which segregated independently of a number of mouse gene markers, including Ahd-1 (encoding mitochondrial aldehyde dehydrogenase) on chromosome 4, ep (pale ears), a marker for chromosome 19, on which Ahd-2 (encoding liver cytosolic aldehyde dehydrogenase) has been previously localized, and Adh-3 (encoding the stomach-specific isozyme of alcohol dehydrogenase) on chromosome 3. Recombination studies have indicated, however, that Ahd-4 and Ahd-6 are distinct but closely linked loci on the mouse genome. An extensive survey of the distribution of Ahd-1, Ahd-2, Ahd-4, and Ahd-6 alleles among 56 strains of mice is reported. No variants have been observed, so far, for the microsomal (AHD-3) and mitochondrial/cytosolic (AHD-5) isozymes previously described. This study, in combination with previous investigations on mouse aldehyde dehydrogenases, provides evidence for six genetic loci for this enzyme.  相似文献   

14.
Ear size and erectness are important conformation measurements in pigs. An F(2) population established by crossing European Large White (small, erect ears) with Chinese Meishan (large, flop ears) was used to study the genetic influence of the two ear traits for the first time. A linkage map incorporating 152 markers on 18 autosomal chromosomes was utilised in a genome scan for QTL. Significant QTL were found on SSC1, 5, 7, 9 and 12 for the two traits. The QTL on SSC5 and SSC7 had major effects and were significant at the genome-wide level (P < 0.01). The QTL on SSC1 for ear erectness also had a major effect and was genome-wide significant (P < 0.01). The 95% confidence interval (CI) of the ear size QTL on SSC5 spanned only 4 cM. The QTL on SSC7 for the two ear traits each had a CI of <20 cM, and their positions overlapped with those of the major QTL affecting subcutaneous fat depths on the same chromosome. This study provides insights on the complex genetic influences underlying pig ear traits and will facilitate positional candidate gene analysis to identify causative DNA variants.  相似文献   

15.
Dairy cattle are an interesting model for gaining insights into the genes responsible for the large variation between and within mammalian species in the protein and fat content of their milk and their milk volume. Large numbers of phenotypes for these traits are available, as well as full genome sequence of key founders of modern dairy cattle populations. In twenty target QTL regions affecting milk production traits, we imputed full genome sequence variant genotypes into a population of 16,721 Holstein and Jersey cattle with excellent phenotypes. Association testing was used to identify variants within each target region, and gene expression data were used to identify possible gene candidates. There was statistical support for imputed sequence variants in or close to BTRC, MGST1, SLC37A1, STAT5A, STAT5B, PAEP, VDR, CSF2RB, MUC1, NCF4, and GHDC associated with milk production, and EPGN for calving interval. Of these candidates, analysis of RNA-Seq data demonstrated that PAEP, VDR, SLC37A1, GHDC, MUC1, CSF2RB, and STAT5A were highly differentially expressed in mammary gland compared to 15 other tissues. For nine of the other target regions, the most significant variants were in non-coding DNA. Genomic predictions in a third dairy breed (Australian Reds) using sequence variants in only these candidate genes were for some traits more accurate than genomic predictions from 632,003 common SNP on the Bovine HD array. The genes identified in this study are interesting candidates for improving milk production in cattle and could be investigated for novel biological mechanisms driving lactation traits in other mammals.  相似文献   

16.
To study the importance for final grain size in wheat (Triticum aestivum, L.) of assimilate supply and the storage capacity of the grain, two field experiments were done. In 1976 nitrogen was applied in the range from none to 180 kg ha-1, part of the crop was thinned, and the top halves of some ears of the short variety Hobbit and of the tall variety Maris Huntsman were removed soon after anthesis. In 1977 ears of Maris Huntsman were halved 5 days after anthesis or at 30 days after anthesis when grain volume was maximum. Thinning the crop from 360 to 180 ear-bearing shoots m-2 30 days before anthesis increased the number of grains per ear, except in the absence of nitrogen fertiliser, but did not increase grain size, grain dry weight per ear or total dry weight per culm. Removing the upper half of ears of Hobbit 5 days after anthesis increased dry weight per grain, but when this treatment was applied to Maris Huntsman either 5 days after anthesis in 1976 and 1977, or when grain volume was maximal in 1977, the grains failed to increase in dry weight. Non-grain dry weight of both varieties was increased by halving the ear. In both varieties the maximum volume of grains in halved ears was larger than in intact ears. Grain dry weight increased relatively less than volume after halving the ear of Hobbit, and the decrease in volume up to maturity was greater in halved than intact ears of both varieties. The larger grain volume in halved ears of Maris Huntsman in 1977 was associated with more endosperm cells.  相似文献   

17.

Objective

Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition.

Methods

To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes.

Results

Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear.

Conclusion

Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.  相似文献   

18.

Maize ear fasciation

Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces.

Material and Methods

Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed.

Results and Discussion

Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection.

Conclusions

Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号