首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insertion of a transgene into a defined genomic locus in human embryonic stem cells (hESCs) is crucial in preventing random integration-induced insertional mutagenesis, and can possibly enable persistent transgene expression during hESC expansion and in their differentiated progenies. Here, we employed homologous recombination in hESCs to introduce heterospecific loxP sites into the AAVS1 locus, a site with an open chromatin structure that allows averting transgene silencing phenomena. We then performed Cre recombinase mediated cassette exchange using baculoviral vectors to insert a transgene into the modified AAVS1 locus. Targeting efficiency in the master hESC line with the loxP-docking sites was up to 100%. Expression of the inserted transgene lasted for at least 20 passages during hESC expansion and was retained in differentiated cells derived from the genetically modified hESCs. Thus, this study demonstrates the feasibility of genetic manipulation at the AAVS1 locus with homologous recombination and using viral transduction in hESCs to facilitate recombinase-mediated cassette exchange. The method developed will be useful for repeated gene targeting at a defined locus of the hESC genome.  相似文献   

2.
Wang H  Lieber A 《Journal of virology》2006,80(23):11699-11709
Random integration of viral gene therapy vectors and subsequent activation or disruption of cellular genes poses safety risks. Major efforts in the field are aimed toward targeting vector integration to specific sites in the host genome. The adeno-associated virus (AAV) Rep78 protein is able to target AAV integration to a specific site on human chromosome 19, called AAVS1. We studied whether this ability could be harnessed to achieve site-specific integration of a 27-kb transgene cassette into a model cell line for human hematopoietic cells (Mo7e). To deliver rep78 and the transgene to Mo7e cells, we used helper-dependent adenovirus (Ad) vectors containing Ad serotype 35 fiber knob domains (HD-Ad). An HD-Ad vector containing the rep78 gene under the control of the globin locus control region (LCR) (Ad.LCR-rep78) conferred Rep78 expression on Mo7e cells. Upon coinfection of Ad.LCR-rep78 with an HD-Ad vector containing a 27-kb globin-LCR-green fluorescent protein (GFP) transgene cassette flanked by AAV inverted terminal repeats (ITRs) (Ad.AAV-LCR-GFP), transduced cells were cloned and expanded (without selection pressure), and vector integration was analyzed in clones with more than 30% GFP-positive cells. Vector integration into the AAVS1 region was seen in 30% of analyzed integration sites, and GFP expression from these integrants was stable over time. Of the remaining integration sites, 25% were within the genomic globin LCR. In almost 90% of sites, transgene integration occurred via the Ad ITR. This indicates that rescue of the AAV ITR-flanked transgene cassette from Ad.AAV-LCR-GFP is not required for Rep78-mediated integration into AAVS1 and that free ends within the vector genome can be created by breaks within the Ad ITRs, whose structure is apparently recognized by cellular "nicking" enzymes. The finding that 55% of all analyzed integration sites were either within the AAVS1 or globin LCR region demonstrates that a high frequency of targeted integration of a large transgene cassette can be achieved in human hematopoietic stem cell lines.  相似文献   

3.
4.
Targeted transgene addition can provide persistent gene expression while circumventing the gene silencing and insertional mutagenesis caused by viral vector mediated random integration. This protocol describes a universal and efficient transgene targeted addition platform in human iPSCs based on utilization of validated open-source TALENs and a gene-trap-like donor to deliver transgenes into a safe harbor locus. Importantly, effective gene editing is rate-limited by the delivery efficiency of gene editing vectors. Therefore, this protocol first focuses on preparation of iPSCs for transfection to achieve high nuclear delivery efficiency. When iPSCs are dissociated into single cells using a gentle-cell dissociation reagent and transfected using an optimized program, >50% cells can be induced to take up the large gene editing vectors. Because the AAVS1 locus is located in the intron of an active gene (PPP1R12C), a splicing acceptor (SA)-linked puromycin resistant gene (PAC) was used to select targeted iPSCs while excluding random integration-only and untransfected cells. This strategy greatly increases the chance of obtaining targeted clones, and can be used in other active gene targeting experiments as well. Two weeks after puromycin selection at the dose adjusted for the specific iPSC line, clones are ready to be picked by manual dissection of large, isolated colonies into smaller pieces that are transferred to fresh medium in a smaller well for further expansion and genetic and functional screening. One can follow this protocol to readily obtain multiple GFP reporter iPSC lines that are useful for in vivo and in vitro imaging and cell isolation.  相似文献   

5.
Many applications in human pluripotent stem cell (PSC) research require the genetic modification of PSCs to express a transgene in a stable and dependable manner. Random transgene integration commonly results in unpredictable and heterogeneous expression. We describe a protocol for the derivation of clonal populations of human embryonic stem cells or induced pluripotent stem cells (iPSCs) expressing a transgene from a single copy of an integrated lentiviral vector that is mapped to the genome. Using optimized transduction conditions, followed by single-cell subcloning and a round of antibiotic selection, we find that approximately half of the colonies retrieved contain a single vector copy. After expansion, the majority of these are confirmed to be clonal. The vector/genomic DNA junction is sequenced and the unique integration site is mapped to the genome. This protocol enables the efficient derivation of genetically modified PSCs containing an integrated transgene at a known genomic site in ~7 weeks.  相似文献   

6.
7.
8.
9.
Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.  相似文献   

10.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases.Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner.  相似文献   

11.
12.
The adeno-associated virus (AAV) is unique in its ability to target viral DNA integration to a defined region of human chromosome 19 (AAVS1). Since AAVS1 sequences are not conserved in a rodent’s genome, no animal model is currently available to study AAV-mediated site-specific integration. We describe here the generation of transgenic rats and mice that carry the AAVS1 3.5-kb DNA fragment. To test the response of the transgenic animals to Rep-mediated targeting, primary cultures of mouse fibroblasts, rat hepatocytes, and fibroblasts were infected with wild-type wt AAV. PCR amplification of the inverted terminal repeat (ITR)-AAVS1 junction revealed that the AAV genome integrated into the AAVS1 site in fibroblasts and hepatocytes. Integration in rat fibroblasts was also observed upon transfection of a plasmid containing the rep gene under the control of the p5 and p19 promoters and a dicistronic cassette carrying the green fluorescent protein (GFP) and neomycin (neo) resistance gene between the ITRs of AAV. The localization of the GFP-Neo sequence in the AAVS1 region was determined by Southern blot and FISH analysis. Lastly, AAV genomic DNA integration into the AAVS1 site in vivo was assessed by virus injection into the quadriceps muscle of transgenic rats and mice. Rep-mediated targeting to the AAVS1 site was detected in several injected animals. These results indicate that the transgenic lines are proficient for Rep-mediated targeting. These animals should allow further characterization of the molecular aspects of site-specific integration and testing of the efficacy of targeted integration of AAV recombinant vectors designed for human gene therapy.  相似文献   

13.
14.
15.
Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome.  相似文献   

16.
17.
The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8+ T cells and gene targeting of a GFP transgene cassette in >40% of CD8+ and CD4+ T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.  相似文献   

18.
Advance in stem cell research resulted in several processes to generate induced pluripotent stem cells (iPSCs) from adult somatic cells. In our previous study, the reprogramming of iPSCs from human dental mesenchymal stem cells (MSCs) including SCAP and DPSCs, has been reported. Herein, safe iPSCs were reprogrammed from SCAP and DPSCs using non-integrating RNA virus vector, which is an RNA virus carrying no risk of altering host genome. DPSCs- and SCAP-derived iPSCs exhibited the characteristics of the classical morphology with human embryonic stem cells (hESCs) without integration of foreign genes, indicating the potential of their clinical application. Moreover, induced PSCs showed the capacity of self-renewal and differentiation into cardiac myocytes. We have achieved the differentiation of hiPSCs to cardiomyocytes lineage under serum and feeder-free conditions, using a chemically defined medium CDM3. In CDM3, hiPSCs differentiation is highly generating cardiomyocytes. The results showed this protocol produced contractile sheets of up to 97.2% TNNT2 cardiomyocytes after purification. Furthermore, derived hiPSCs differentiated to mature cells of the three embryonic germ layers in vivo and in vitro of beating cardiomyocytes. The above whole protocol enables the generation of large scale of highly pure cardiomyocytes as needed for cellular therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号