首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Biofilms are highly structured, surface‐associated communities. A hallmark of biofilms is their extraordinary resistance to antimicrobial agents that is activated during early biofilm development of Pseudomonas aeruginosa and requires the regulatory hybrid SagS and BrlR, a member of the MerR family of multidrug efflux pump activators. However, little is known about the mechanism by which SagS contributes to BrlR activation or drug resistance. Here, we demonstrate that ΔsagS biofilm cells harbour the secondary messenger c‐di‐GMP at reduced levels similar to those observed in wild‐type cells grown planktonically rather than as biofilms. Restoring c‐di‐GMP levels to wild‐type biofilm‐like levels restored brlR expression, DNA binding by BrlR, and recalcitrance to killing by antimicrobial agents of ΔsagS biofilm cells. We likewise found that increasing c‐di‐GMP levels present in planktonic cells to biofilm‐like levels (≥ 55 pmol mg?1) resulted in planktonic cells being significantly more resistant to antimicrobial agents, with increased resistance correlating with increased brlR, mexA, and mexE expression and BrlR production. In contrast, reducing cellular c‐di‐GMP levels of biofilm cells to ≤ 40 pmol mg?1 correlated with increased susceptibility and reduced brlR expression. Our findings suggest that a signalling pathway involving a specific c‐di‐GMP pool regulated by SagS contributes to the resistance of P. aeruginosa biofilms.  相似文献   

3.
4.
5.
The hybrid sensor SagS plays a central role in the formation of Pseudomonas aeruginosa biofilms, by enabling the switch from the planktonic to the biofilm mode of growth and by facilitating the transition of biofilm cells to a highly tolerant state. In this study, we examined the importance of the SagS key amino acid residues associated with biofilm formation (L154) and antibiotic tolerance (D105) in P. aeruginosa virulence. Recombinant P. aeruginosa ΔsagS and ΔsagS chromosomally expressing wild‐type sagS, or its two variants D105A and L154A, were tested for their potential to form biofilms and cause virulence in plants and mouse models of acute and chronic pneumonia. Although mutation of sagS did not alter P. aeruginosa virulence during acute infections, a significant difference in pathogenicity of sagS mutants was observed during chronic infections, with the L154A variant showing reduced bacterial loads in the chronic pneumonia model, while interference with the D105 residue enhanced the susceptibility of P. aeruginosa biofilms during tobramycin treatment. Our findings suggest that interference with the biofilm or tolerance regulatory circuits of SagS affects P. aeruginosa pathogenicity in chronic but not acute infections, and reveal SagS to be a promising new target to treat P. aeruginosa biofilm infections.  相似文献   

6.
7.
8.
Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ΔcprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ΔcprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ΔcprS and flagellar mutations (ΔflhA, ΔpflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms.  相似文献   

9.
10.
The ability of opportunistic bacterial pathogens to grow in biofilms is decisive in the pathogenesis of chronic infectious diseases. Growth within biofilms does not only protect the bacteria against the host immune system but also from the killing by antimicrobial agents. Here, we introduce a mouse model in which intravenously administered planktonic Pseudomonas aeruginosa bacteria are enriched in transplantable subcutaneous mouse tumors. Electron microscopy images provide evidence that such bacteria reside in the tumor tissue within biofilm structures. Immunohistology furthermore demonstrated that infection of the tumor tissue elicits a host response characterized by strong neutrophilic influx. Interestingly, the biofilm defective PA14 pqsA transposon mutant formed less biofilm in vivo and was more susceptible to clearance by intravenous ciprofloxacin treatment as compared to the wild-type control. In conclusion, we have established an experimentally tractable model that may serve to identify novel bacterial and host factors important for in vivo biofilm formation and to re-evaluate bactericidal and anti-biofilm effects of currently used and novel antibacterial compounds.  相似文献   

11.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

12.
Streptococcus mutans, a key etiological agent of human dental caries, lives almost exclusively on the tooth surface in plaque biofilms and is known for its ability to survive and respond to various environmental insults, including low pH, and antimicrobial agents from other microbes and oral care products. In this study, a penicillin-binding protein (PBP1a)-deficient mutant, strain JB467, was generated by allelic replacement mutagenesis and analyzed for the effects of such a deficiency on S. mutans’ stress tolerance response and biofilm formation. Our results so far have shown that PBP1a-deficiency in S. mutans affects growth of the deficient mutant, especially at acidic and alkaline pHs. As compared to the wild-type, UA159, the PBP1a-deficient mutant, JB467, had a reduced growth rate at pH 6.2 and did not grow at all at pH 8.2. Unlike the wild-type, the inclusion of paraquat in growth medium, especially at 2 mM or above, significantly reduced the growth rate of the mutant. Acid killing assays showed that the mutant was 15-fold more sensitive to pH 2.8 than the wild-type after 30 minutes. In a hydrogen peroxide killing assay, the mutant was 16-fold more susceptible to hydrogen peroxide (0.2%, w/v) after 90 minutes than the wild-type. Relative to the wild-type, the mutant also had an aberrant autolysis rate, indicative of compromises in cell envelope integrity. As analyzed using on 96-well plate model and spectrophotometry, biofilm formation by the mutant was decreased significantly, as compared to the wild-type. Consistently, Field Emission-SEM analysis also showed that the PBP1a-deficient mutant had limited capacity to form biofilms. TEM analysis showed that PBP1a mutant existed primarily in long rod-like cells and cells with multiple septa, as compared to the coccal wild-type. The results presented here highlight the importance of pbp1a in cell morphology, stress tolerance, and biofilm formation in S. mutans.  相似文献   

13.
Pseudomonas aeruginosa is one of the major nosocomial pathogen that can causes a wide variety of acute and chronic infections P. aeruginosa is a dreaded bacteria not just because of the high intrinsic and acquired antibiotic resistance rates but also the biofilm formation and production of multiple virulence factors. We investigated the in vitro activities of antibiotics (ceftazidime, tobramycin, ciprofloxacin, doripenem, piperacillin and colistin) and antimicrobial cationic peptides (AMPs; LL-37, CAMA: cecropin(1–7)-melittin A(2–9) amide, melittin, defensin and magainin-II) alone or in combination against biofilms of laboratory strain ATCC 27853 and 4 clinical strains of P. aeruginosa. The minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentrations (MBEC) were determined by microbroth dilution technique. The MBEC values of antibiotics and AMPs were 80–>5120 and 640–>640 mg/L, respectively. When combined with the LL-37 or CAMA at 1/10× MBEC, the MBEC values of antibiotics that active against biofilms, were decreased up to 8-fold. All of the antibiotics, and AMPs were able to inhibit the attachment of bacteria at the 1/10× MIC and biofilm formation at 1× or 1/10× MIC concentrations. Time killing curve studies showed 3-log10 killing against biofilms in 24 h with almost all studied antibiotics and AMPs. Synergism were seen in most of the studied combinations especially CAMA/LL-37 + ciprofloxacin against at least one or two strains’ biofilms. Since biofilms are not affected the antibiotics at therapeutic concentrations, using a combination of antimicrobial agents including AMPs, or inhibition of biofilm formation by blocking the attachment of bacteria to surfaces might be alternative methods to fight with biofilm associated infections.  相似文献   

14.
Staphylococcus epidermidis has become a significant pathogen causing infections due to biofilm formation on surfaces of indwelling medical devices. Biofilm-associated bacteria exhibit enhanced resistance to many conventional antibiotics. It is therefore, important to design novel antimicrobial reagents targeting S. epidermidis biofilms. In a static chamber system, the bactericidal effect of two leading compounds active as YycG inhibitors was assessed on biofilm cells by confocal laser scanning microscopy combined with viability staining. In young biofilms (6-h-old), the two compounds killed the majority of the embedded cells at concentrations of 100 microM and 25 microM, respectively. In mature biofilms (24-h-old), one compound was still effectively killing biofilm cells, whereas the other compound mainly killed cells located at the bottom of the biofilm. In contrast, vancomycin was found to stimulate biofilm development at the MBC (8 microg mL(-1)). Even at a high concentration (128 microg mL(-1)), vancomycin exhibited poor killing on cells embedded in biofilms. The two compounds exhibited faster and more effective killing of S. epidermidis planktonic cells than vancomycin at the early stage of exposure (6 h). The data suggest that the new inhibitors can serve as potential agents against S. epidermidis biofilms when added alone or in concert with other antimicrobial agents.  相似文献   

15.
Biofilms are considered to be highly resistant to antimicrobial agents. Strictly speaking, this is not the case-biofilms do not grow in the presence of antimicrobials any better than do planktonic cells. Biofilms are indeed highly resistant to killing by bactericidal antimicrobials, compared to logarithmic-phase planktonic cells, and therefore exhibit tolerance. It is assumed that biofilms are also significantly more tolerant than stationary-phase planktonic cells. A detailed comparative examination of tolerance of biofilms versus stationary- and logarithmic-phase planktonic cells with four different antimicrobial agents was performed in this study. Carbenicillin appeared to be completely ineffective against both stationary-phase cells and biofilms. Killing by this beta-lactam antibiotic depends on rapid growth, and this result confirms the notion of slow-growing biofilms resembling the stationary state. Ofloxacin is a fluoroquinolone antibiotic that kills nongrowing cells, and biofilms and stationary-phase cells were comparably tolerant to this antibiotic. The majority of cells in both populations were eradicated at low levels of ofloxacin, leaving a fraction of essentially invulnerable persisters. The bulk of the population in both biofilm and stationary-phase cultures was tolerant to tobramycin. At very high tobramycin concentrations, a fraction of persister cells became apparent in stationary-phase culture. Stationary-phase cells were more tolerant to the biocide peracetic acid than were biofilms. In general, stationary-phase cells were somewhat more tolerant than biofilms in all of the cases examined. We concluded that, at least for Pseudomonas aeruginosa, one of the model organisms for biofilm studies, the notion that biofilms have greater resistance than do planktonic cells is unwarranted. We further suggest that tolerance to antibiotics in stationary-phase or biofilm cultures is largely dependent on the presence of persister cells.  相似文献   

16.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

17.
In this report, we show that biofilm formation by Streptococcus pneumoniae serotype 19 gives rise to variants (the small mucoid variant [SMV] and the acapsular small-colony variant [SCV]) differing in capsule production, attachment, and biofilm formation compared to wild-type strains. All biofilm-derived variants harbored SNPs in cps19F. SCVs reverted to SMV, but no reversion to the wild-type phenotype was noted, indicating that these variants were distinct from opaque- and transparent-phase variants. The SCV-SMV reversion frequency was dependent on growth conditions and treatment with tetracycline. Increased reversion rates were coincident with antibiotic treatment, implicating oxidative stress as a trigger for the SCV-SMV switch. We, therefore, evaluated the role played by hydrogen peroxide, the oxidizing chemical, in the reversion and emergence of variants. Biofilms of S. pneumoniae TIGR4-ΔspxB, defective in hydrogen peroxide production, showed a significant reduction in variant formation. Similarly, supplementing the medium with catalase or sodium thiosulfate yielded a significant reduction in variants formed by wild-type biofilms. Resistance to rifampin, an indicator for mutation frequency, was found to increase approximately 55-fold in biofilms compared to planktonic cells for each of the three wild-type strains examined. In contrast, TIGR4-ΔspxB grown as a biofilm showed no increase in rifampin resistance compared to the same cells grown planktonically. Furthermore, addition of 2.5 and 10 mM hydrogen peroxide to planktonic cells resulted in a 12- and 160-fold increase in mutation frequency, respectively, and gave rise to variants similar in appearance, biofilm-related phenotypes, and distribution of biofilm-derived variants. The results suggest that hydrogen peroxide and environmental conditions specific to biofilms are responsible for the development of non-phase-variable colony variants.  相似文献   

18.
The primary goal of this study was to develop a new strategy to inactivate bacterial biofilms using the thermal stress derived from superparamagnetic iron oxide nanoparticles (SPIONs) in an alternating current (AC) magnetic field. A large number of studies have examined the inactivation of bacterial biofilms using antimicrobial agents; however, there have been no attempts to inactivate biofilms by hyperthermia using SPIONs. In this study, a SPION solution was added to Pseudomonas aeruginosa (P. aeruginosa) PA01 biofilm, and heat was generated by placing the nanoparticle-containing biofilm in an AC magnetic field. The heating temperature was dependent on the concentration of the added SPION solution. More than 4 log inactivation of the PA01 biofilm was obtained using a 60 mg mL−1 SPION solution in 8 min, and this resulted in a dramatic disintegration of the bacterial cell membrane in the biofilm. This inactivation was largely due to the thermal effect. Local heating of a specific area is also possible using this method, and the heating temperature can be easily adjusted by controlling the concentration of the SPION solution. Therefore, hyperthermia using magnetic nanoparticles holds promise as an effective tool for inactivating the bacterial biofilm.  相似文献   

19.
The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.  相似文献   

20.
Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号