首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84×10−6 and adjusted p value 2.99×10−3 after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.  相似文献   

2.
《Cytokine》2014,70(2):272-276
Introduction: Macrophage migration inhibitory factor (MIF) has been shown to be a key regulator in innate and adaptive immune responses. A single nucleotide polymorphism in the 5′ region of the MIF gene, MIF -1731G/C, is associated with increased MIF protein production, in vivo and in vitro. Associations have been shown between the minor MIF -173C allele and sarcoidosis patients with erythema nodosum (EN). Löfgren’s syndrome is an acute and usually self-remitting phenotype of sarcoidosis. It is defined as having an acute onset with bilateral hilar lymphadenopathy (BHL), fever, erythema nodosum (EN) and/or arthritis.The aim of this study was to investigate whether MIF -173G/C associates with the susceptibility to and the clinical manifestations, i.e. arthritis or EN, of Löfgren’s syndrome.A total of 171 patients with Löfgren’s syndrome and 313 controls were genotyped for a single nucleotide polymorphism at position -173 of the MIF gene (SNP rs755622), using a PCR and a restriction enzyme technique.Results: There were no significant differences found in the MIF -173C allele frequencies between patients with Löfgren’s syndrome and controls. In patients with Löfgren’s syndrome with only EN, a significantly increased frequency of the C minor allele was observed compared to patients with arthritis only (p = 0.0095; OR 3.08, CI: 1.28–7.39).Patients with only EN compared to patients with EN and arthritis showed a significantly increased frequency of the minor C allele (p = 0.044; OR 1.97, CI: 1.01–3.85). But patients with only arthritis compared to patients with EN and arthritis did not show a significant difference in C allele frequency (p = 0.270; OR 0.64, CI: 0.29–1.42).Conclusions: The MIF -173C allele is associated with erythema nodosum in Löfgren’s syndrome, but not with susceptibility to sarcoidosis. This indicates a role for MIF after antigen presenting to the T cell has taken place and the sarcoid inflammatory response has begun.  相似文献   

3.
4.
Infection with mosquito-borne West Nile virus (WNV) is usually asymptomatic but can lead to severe WNV encephalitis. The innate cytokine, macrophage migration inhibitory factor (MIF), is elevated in patients with WNV encephalitis and promotes viral neuroinvasion and mortality in animal models. In a case-control study, we examined functional polymorphisms in the MIF locus in a cohort of 454 North American patients with neuroinvasive WNV disease and found patients homozygous for high-expression MIF alleles to be >20-fold (p = 0.008) more likely to have WNV encephalitis. These data indicate that MIF is an important determinant of severity of WNV neuropathogenesis and may be a therapeutic target.  相似文献   

5.
Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine well known for its role in inflammation enhancement. However, a growing body of evidence is emerging on its role in energy metabolism in insulin sensitive tissues such as hippocampus, a brain region implicated in cognition, learning and memory. We hypothesized that genetic deletion of MIF may result in the specific behavioral changes, which may be linked tо impairments in brain or systemic insulin sensitivity by possible changes of the hippocampal synaptic plasticity. To assess memory, exploratory behavior and anxiety, three behavioral tests were applied on Mif gene-deficient (MIF−/−) and “wild type” C57BL/6J mice (WT). The parameters of systemic and hippocampal insulin sensitivity were also determined. The impact of MIF deficiency on hippocampal plasticity was evaluated by analyzing the level of synaptosomal polysialylated-neural cell adhesion molecule (PSA-NCAM) plasticity marker and mRNA levels of different neurotrophic factors.The results showed that MIF−/− mice exhibit emphasized anxiety-like behaviors, as well as impaired recognition memory, which may be hippocampus-dependent. This behavioral phenotype was associated with impaired systemic insulin sensitivity and attenuated hippocampal insulin sensitivity, characterized by increased inhibitory Ser307 phosphorylation of insulin receptor substrate 1 (IRS1). Finally, MIF−/− mice displayed a decreased hippocampal PSA-NCAM level and unchanged Bdnf, NT-3, NT-4 and Igf-1 mRNA levels.The results suggest that the lack of MIF leads to disturbances of systemic and hippocampal insulin sensitivity, which are possibly responsible for memory deficits and anxiety, most likely through decreased PSA-NCAM-mediated neuroplasticity rather than through neurotrophic factors.  相似文献   

6.
Macrophage migration inhibitory factor (MIF) is an upstream pro-inflammatory cytokine that is associated with the pathogenesis of autoimmune inflammatory diseases including rheumatoid arthritis (RA). Two polymorphisms in the upstream region exist in the MIF gene and are associated with RA susceptibility or severity in different populations. In this case-control study, we investigated whether MIF polymorphisms are associated with RA susceptibility or activity in a western Mexican population .The relationship of MIF levels with clinical features of disease also was assessed. Genotyping of the ?794 CATT5–8 (rs5844572) and the ?173 G > C (rs755622) polymorphisms was performed by PCR and PCR-RFLP respectively on 226 RA patients and 210 healthy subjects. Serum MIF levels were determined by ELISA. We found a significant association between the ?794 CATT5–8 6,7 MIF genotype with RA. Moreover, we detected an association between the ?794 CATT7 allele with early onset RA. The ?794 CATT7 and ?173*C alleles, which are in linkage disequilibrium, were associated with high disease activity on RA patients. A positive correlation between circulating MIF levels and C-reactive protein, erythrocyte sedimentation rate, rheumatoid factor, anti-citrullinated protein/peptides antibodies and TNFα was detected. MIF levels appear to be associated with disease progression rather than disease activity, which is distinct from the established relationship between disease activity and TNFα levels. In conclusion, the MIF gene and protein are associated with RA in a western Mexican population, with a main contribution onto early onset and early stages of disease.  相似文献   

7.
《Endocrine practice》2012,18(1):39-48
ObjectiveTo compare the resting energy expenditure in different macrophage migration inhibitory factor (MIF) genotypes and to identify the in vitro effects of Alpinia officinarum Hance extract (AOHE) on MIF expression in obese and nonobese persons.MethodsIn the fasting state, obese and nonobese persons were assessed for the measurement of resting energy expenditure rate (REE) by indirect calorimetry. We compared it with the expected amount ([REE measured by indirect calorimetry / predicted REE according to Harris Benedict equations] × 100). Participants were classified into those with normal REE (≥ 100) vs those with impaired REE (< 100). Body composition was analyzed. Real-time polymerase chain reaction was performed using specific primer pairs for MIF messenger RNA, and β-actin was used as the internal control.ResultsThe study included 69 obese and 103 non- obese participants. The proportions of MIF genotypes were slightly different in obese and nonobese participants. However, the proportions of MIF genotypes weresignificantly different in participants with normal REE and those with low REE. The MIF gene was highly expressed in the obese group compared with MIF expression in the nonobese group. Body fat mass and MIF expression were higher in participants with the GG genotype than in the other genotype groups. MIF expression was inversely associated with REE in both groups (r = − 0.36, P = .04). After treatment of peripheral blood mononuclear cells with AOHE, MIF expression differed according to MIF genotype.ConclusionsOur results indicate that AOHE is a major modulator of MIF-dependent pathologic conditions in obesity and are consistent with mounting evidence that defines a regulating role for MIF in cytokine production in an inflammatory state in in vitro studies. (Endocr Pract. 2012;18:39-48)  相似文献   

8.
Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF−/− C57Bl\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF−/− macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF−/− exhibited reduced weight gain. Age and weight-matched obese MIF−/− mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF−/− stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF−/−adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF−/− macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF−/− liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a potential therapeutic target for treatment of high-fat diet induced insulin resistance.  相似文献   

9.
Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MIF). The role of MIF for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MIF knockout mice (MIF?/?) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF?/? mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-α production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts.  相似文献   

10.
Sesquiterpene synthases (STSs) catalyze the formation of a large class of plant volatiles called sesquiterpenes. While thousands of putative STS sequences from diverse plant species are available, only a small number of them have been functionally characterized. Sequence identity-based screening for desired enzymes, often used in biotechnological applications, is difficult to apply here as STS sequence similarity is strongly affected by species. This calls for more sophisticated computational methods for functionality prediction. We investigate the specificity of precursor cation formation in these elusive enzymes. By inspecting multi-product STSs, we demonstrate that STSs have a strong selectivity towards one precursor cation. We use a machine learning approach combining sequence and structure information to accurately predict precursor cation specificity for STSs across all plant species. We combine this with a co-evolutionary analysis on the wealth of uncharacterized putative STS sequences, to pinpoint residues and distant functional contacts influencing cation formation and reaction pathway selection. These structural factors can be used to predict and engineer enzymes with specific functions, as we demonstrate by predicting and characterizing two novel STSs from Citrus bergamia.  相似文献   

11.
Macrophage migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine sustaining the acute response to gram–negative bacteria and a regulatory role for MIF in Cystic Fibrosis has been suggested by the presence of a functional, polymorphic, four-nucleotide repeat in this gene''s promoter at position −794, with the 5-repeat allele displaying lower promoter activity. We aimed at assessing the association of this polymorphism with disease severity in a group of Cystic Fibrosis patients homozygous for F508del CFTR gene mutation. Genotype frequencies were determined in 189 Cystic Fibrosis and 134 control subjects; key clinical features of patients were recorded and compared among homozygous 5-allele patients and the other MIF genotypes. Patients homozygous for the 5-repeat allele of MIF promoter displayed a slower rate of lung function decline (p = 0.027) at multivariate survival analysis. Multiple regression analysis on age-normalized respiratory volume showed no association of the homozygous 5-repeat genotype with lung function under stable conditions and no correlation with P.aeruginosa chronic colonization. Therefore, only the Homozygous 5-repeat genotype at MIF −794 is associated with milder disease in F508del Cystic Fibrosis patients.  相似文献   

12.
To screen for effective small interference RNA (siRNA), a simple and visualized method was developed using the green fluorescence protein (GFP) as a reporter. Candidate siRNAs targeting macrophage migration inhibition factor genes (MIF) were identified. By using the pEGFP-N3 vector, the MIF-GFP expression plasmid, pEGFP-MIF, was constructed with the same Kozak consensus translation initiation site and start code ATG for the MIF-EGFP coding sequence. Based on the siRNA expression vector pSilencer-4.1, 3 candidate MIF siRNA expression plasmids were constructed and co-transfected with the pEGFP-MIF into the HEK293 cells, respectively. The GFP expression in HEK293 cells could be viewed by fluorescence microscopy and the MIF mRNA expressions were determined by real-time quantitative PCR. The 3 candidate MIF siRNA expression plasmids were also co-transfected with the MIF expression plasmid into the HEK293 cells, respectively, and the MIF mRNA expressions were determined by real-time quantitative PCR. The results show that the down-regulated expression of the MIF mRNA was consistent with the GFP expression and the same effective MIF siRNAs were screened by using the pEGFP-MIF or MIF expression plasmid with the candidate MIF siRNAs expression plasmids. Therefore, by using the GFP as a reporter, a useful method was provided to screen for effective siRNAs targeting specific genes co-expressed with the GFP. This may be a good strategy for screening for effective siRNAs targeting different genes. __________ Translated from Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(3): 231–235 [译自: 中国生物化学与分子生物学报]  相似文献   

13.
Macrophage migration inhibitory factor (MIF) has been found to be involved in host resistance to several parasitic infections. To determine the mechanisms of the MIF-dependent responses to Trypanosoma cruzi, we investigated host resistance in MIF-/- mice (on the BALB/c background) during an intraperitoneal infection. We focused on the potential involvement of MIF in dendritic cell (DC) maturation and cytokine production. Following a challenge with 5 x 103 T. cruzi parasites, wild type (WT) mice developed a strong IL-12 response and adequate maturation of the draining mesenteric lymph node DCs and were resistant to infection. In contrast, similarly infected MIF-/- mice mounted a weak IL-12 response, displayed immature DCs in the early phases of infection and rapidly succumbed to T. cruzi infection. The lack of maturation and IL-12 production by the DCs in response to total T. cruzi antigen (TcAg) was confirmed by in vitro studies. These effects were reversed following treatment with recombinant MIF. Interestingly, TcAg-stimulated bone marrow-derived DCs from both WT and MIF-/- mice had increased ERK1/2 MAPK phosphorylation. In contrast, p38 phosphorylation was only upregulated in WT DCs. Reconstitution of MIF to MIF-/- DCs upregulated p38 phosphorylation. The MIF-p38 pathway affected MHC-II and CD86 expression as well as IL-12 production. These findings demonstrate that the MIF-induced early DC maturation and IL-12 production mediates resistance to T. cruzi infection, probably by activating the p38 pathway.  相似文献   

14.
SRC-3/AIB1 (steroid receptor coactivator 3/amplified in breast cancer 1) is an authentic oncogene that contributes to the development of drug resistance and poor disease-free survival in cancer patients. Autophagy is also an important cell death mechanism that has tumor suppressor function. In this study, we identified macrophage migration inhibitory factor (MIF) as a novel target gene of SRC-3 and demonstrated its importance in cell survival. Specifically, we showed that MIF is a strong suppressor of autophagic cell death. We further showed that suppression of MIF, in turn, induced autophagic cell death, enhanced chemosensitivity and inhibited tumorigenesis in a xenograft mouse tumorigenesis model. Our study demonstrated that regulation of MIF expression and suppression of autophagic cell death is a potent mechanism by which SRC-3 contributes to increased chemoresistance and tumorigenicity.  相似文献   

15.
Leishmania major, an intracellular parasitic protozoon that infects, differentiates and replicates within macrophages, expresses two closely related MIF-like proteins. To ascertain the roles and potential differences of these two Leishmania proteins, recombinant L. major MIF1 and MIF2 have been produced and the structures resolved by X-ray crystallography. Each has a trimeric ring architecture similar to mammalian MIF, but with some structurally distinct features. LmjMIF1, but not LmjMIF2, has tautomerase activity. LmjMIF2 is found in all life cycle stages whereas LmjMIF1 is found exclusively in amastigotes, the intracellular stage responsible for mammalian disease. The findings are consistent with parasite MIFs modulating or circumventing the host macrophage response, thereby promoting parasite survival, but suggest the LmjMIFs have potentially different biological roles. Analysis of the Leishmania braziliensis genome showed that this species lacks both MIF genes. Thus MIF is not a virulence factor in all species of Leishmania.  相似文献   

16.
Short of a complete genomic DNA sequence, sequence tagged sites (STSs) have emerged as major genomic reagents for the genetic analysis of little-studied ecologically and agriculturally important organisms. Here, we report STS developed for the turkey (Meleagris gallopavo), guinea fowl (Numidea meleagris), Japanese quail (Coturnix coturnix) and pigeon using primers specific for reference DNA sequences of two chicken (Gallus gallus) genes, aggrecan (agc1) and type X collagen (col10). Additional STSs were also developed for turkey, quail and chicken using primers specific for the human apobec-1 gene. The total length of the STSs developed was 5990, 2522, 4127, 1539 and 6600 bp for the turkey, guinea fowl, Japanese quail, pigeon and chicken, respectively. Based on splice site consensus GT and AG sequences, four of the seven agc1-based chicken STS appear to contain introns. The human gene-based STSs showed no significant sequence identity with the reference GenBank sequences. Maximum likelihood, maximum parsimony and neighbour-joining analysis of an agc1-based STS that was common to all five species showed phylogenetic relationships consistent with those previously defined using mitochondria DNA sequences and nuclear gene restriction maps. Additionally, several putative single nucleotide polymorphisms (SNPs) were detected within the STSs, including eight in the turkey, two in the quail, and two in the chicken when multiple sequences were evaluated from each species. This report describes new STSs that are resources for genetic and physical mapping and genome analysis within and among avian species. These resources should further aid in our understanding of the biology of agriculturally important but little-studied guinea fowl and turkey. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.

Background

Macrophage inhibitory factor (MIF) is a pro‐inflammatory cytokine modulating monocyte motility and a pleiotropic regulator of different biological and cellular processes. The MIF‐173G/C (rs755622) polymorphism is found in the promoter region and affects its activity. The present study investigated the MIF polymorphism as a risk factor for the development of acute lymphoblastic leukemia (ALL) in Egyptian children.

Methods

We analyzed the MIF‐173G/C (rs755622) polymorphism in 180 ALL cases and 150 healthy control children by amplification of the gene using a polymerase chain reaction followed by restriction endonuclease digestion and running on an agarose gel for visualization of the product.

Results

We found a significant incidence of the homozygous polymorphic (CC) genotype and the combined polymorphic genotypes (GC + CC) in ALL patients compared to healthy controls (p = 0.001 and p = 0.007, respectively), whereas the wild‐type genotype (GG) was more common in healthy controls (p = 0.006). Multivariate logistic regression analysis adjustment for MIF different genotypes and other potential risk factors such as age, sex and parental smoking indicated that the CC genotype is the only significant risk factor for the test (p = 0.02). We also noted that, by increasing the C‐allele representation within the gene [GC, CC], there was an increase in total leukocytic count (p = 0.09 and p = 0.001, respectively) that may reflect the bad prognostic impact of the polymorphic allele, although further studies are needed.

Conclusions

The results of the present study indicate that the MIF‐173G/C (rs755622) polymorphism is a risk factor for childhood ALL development with respect to both homozygous and combined polymorphic genotypes. In addition, the increased leukocytic count in synchronization with the increased representation of the polymorphic C‐allele may reflect its bad prognostic impact.  相似文献   

18.

Background

In non-gastrointestinal stromal tumor soft tissue sarcoma (non-GIST STS) optimal treatment is surgery with wide resection margins. Vascular endothelial growth factors (VEGFs) and receptors (VEGFRs) are known to be key players in the initiation of angiogenesis and lymphangiogenesis. This study investigates the prognostic impact of VEGFs and VEGFRs in non-GIST STS with wide and non-wide resection margins.

Methods

Tumor samples from 249 patients with non-GIST STS were obtained and tissue microarrays were constructed for each specimen. Immunohistochemistry was used to evaluate the expressions of VEGF-A, -C and -D and VEGFR-1, -2 and -3.

Results

In the univariate analyses, VEGF-A (P = 0.040) in the total material, and VEGF-A (P = 0.018), VEGF-C (P = 0.025) and VEGFR-3 (P = 0.027) in the subgroup with wide resection margins, were significant negative prognostic indicators of disease-specific survival (DSS). In the multivariate analysis, high expression of VEGFR-3 (P = 0.042, HR = 1.907, 95% CI 1.024-3.549) was an independent significant negative prognostic marker for DSS among patients with wide resection margins.

Conclusion

VEGFR-3 is a strong and independent negative prognostic marker for non-GIST STSs with wide resection margins.  相似文献   

19.
A yeast artificial chromosome (YAC), P1, and cosmid clone contig was constructed for the Werner syndrome (WRN) region of chromosome 8p12–p21 and used to clone a candidate gene forWRN.This region also possibly contains a familial breast cancer locus. The contig was initiated by isolating YACs for the glutathione reductase (GSR) gene and extended in either direction by walking techniques. Sequence-tagged site (STS) markers were generated from subclones of 2GSRYACs and used to identify P1 and cosmid clones. Additional STSs were generated from P1 and cosmid clones and from potential expressed sequences identified by cDNA selection and exon amplification methods. The final contig was assembled by typing 17 YACs, 20 P1 clones, and 109 cosmids for 54 STS markers. TheWRNregion could be spanned by 2 nonchimeric YACs covering approximately 1.4 Mb. A P1/cosmid contig was established covering the core 700–800 kb of theWRNregion. Fifteen new short tandem repeat polymorphisms and 2 biallelic polymorphic markers were identified and included as STSs in the contig. Analysis of these markers in Werner syndrome subjects demonstrates that the candidate WRN gene is in a region of linkage disequilibrium.  相似文献   

20.
American tegumentary leishmaniasis (ATL) is an infectious disease caused mostly by Leishmania (Viannia) braziliensis in Southeast Brazil. The clinical manifestations are vast, ranging from asymptomatic to severe mucosal leishmaniasis (ML). It has been suggested that variation of the pathogen does not fully explain the response spectrum and the variability of clinical manifestations. Previous data have shown that host genetics also play a role in disease outcome. Herein, we have tested the association of TNF, IL10, IL12 and MIF single nucleotide polymorphisms (SNPs) using a case-control study design including 110 cutaneous leishmaniasis (CL) patients and 682 healthy subjects. The genotype–phenotype correlation was also assessed using leishmania antigens to stimulate peripheral blood mononuclear cells obtained from cured CL patients. Results demonstrated that the MIF ?173C allele is associated with leishmaniasis outcome and also with lower levels of MIF in culture supernatants. Also, the TNF ?308AA genotype was statistically increased among leishmaniasis patients. The results showed here suggest that the lower levels of MIF produced by MIF ?173C carriers could influence the host–Leishmania interaction, favoring infection and disease progression. On the other hand, high TNF levels can contribute to tissue damage, consequently leading to skin lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号