首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.  相似文献   

2.
The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus entry. We optimized and developed an H7N9-pseudotyped particle system (H7N9pp) that could be neutralized by anti-H7 antibodies and closely mimicked the entry process of the H7N9 virus. Avian, human and mouse-derived cultured cells showed high, moderate and low permissiveness to H7N9pp, respectively. Based on influenza virus membrane fusion mechanisms, a potent anti-H7N9 peptide (P155-185-chol) corresponding to the C-terminal ectodomain of the H7N9 hemagglutinin protein was successfully identified. P155-185-chol demonstrated H7N9pp-specific inhibition of infection with IC50 of 0.19 µM. Importantly, P155-185-chol showed significant suppression of A/Anhui/1/2013 H7N9 live virus propagation in MDCK cells and additive effects with NA inhibitors Oseltamivir and Zanamivir. These findings expand our knowledge of the entry properties of the novel H7N9 viruses, and they highlight the potential for developing a new class of inhibitors targeting viral entry for use in the next pandemic.  相似文献   

3.
4.
Identifying major antigenic and protective epitopes of the H7 hemagglutinin (HA) will be important for understanding the antibody response to vaccines developed against the novel influenza H7N9 viruses that emerged in China in 2013. To facilitate antigenic characterization of the H7N9 HA and to develop reagents for evaluation of H7N9 candidate vaccines, we generated a panel of murine monoclonal antibodies (mAbs) to the HA of A/Shanghai/2/2013 using mammalian cell-derived virus-like particles (VLP) containing the H7 HA. Neutralizing antibodies identified an HA epitope corresponding to antigenic site A on the structurally similar influenza H3 hemagglutinin. Importantly, the neutralizing antibodies protect against A/Shanghai/2/2013 challenge. This antigenic site is conserved among many H7 viruses, including strains of both Eurasian and North American lineage, and the isolated neutralizing antibodies are cross-reactive with older H7 vaccine strains. The results indicate that the identified antigenic site is a potentially important protective epitope and suggest the potential benefit of cross-reactive antibody responses to vaccination with H7 candidate vaccines.  相似文献   

5.
Infectious Cell Entry Mechanism of Influenza Virus   总被引:10,自引:8,他引:10       下载免费PDF全文
Interaction between influenza virus WSN strain and MDCK cells was studied by using spin-labeled phospholipids and electron microscopy. Envelope fusion was negligibly small at neutral pH but greatly activated in acidic media in a narrow pH range around 5.0. The half-time was less than 1 min at 37°C at pH 5.0. Virus binding was almost independent of the pH. Endocytosis occurred with a half-time of about 7 min at 37°C at neutral pH, and about 50% of the initially bound virus was internalized after 1 h. Electron micrographs showed binding of virus particles in coated pits in the microvillous surface of plasma membrane and endocytosis into coated vesicles. Chloroquine inhibited virus replication. The inhibition occurred when the drug was added not later than 10 min after inoculation. Chloroquine caused an increase in the lysosomal pH 4.9 to 6.1. The drug did not affect virus binding, endocytosis, or envelope fusion at pH 5.0. Electron micrographs showed many virus particles remaining trapped inside vacuoles even after 30 min at 37°C in the presence of drug, in contrast to only a few particles after 10 min in vacuoles and secondary lysosomes in its absence. Virus replication in an artificial condition, i.e., brief exposure of the inoculum to acidic medium followed by incubation in neutral pH in the presence of chloroquine, was also observed. These results are discussed to provide a strong support for the infection mechanism of influenza virus proposed previously: virus uptake by endocytosis, fusion of the endocytosed vesicles with lysosome, and fusion of the virus envelope with the surrounding vesicle membrane in the secondary lysosome because of the low pH. This allows the viral genome to enter the target cell cytoplasm.  相似文献   

6.
In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.  相似文献   

7.
8.

Purpose

To provide prognosis of an 18 patient cohort who were confirmed to have H7N9 lung infection in Shanghai.

Methods

Patients'' history, clinical manifestation, laboratory test, treatment strategy and mortality were followed and recorded for data analysis.

Results

A total of 18 patients had been admitted into Shanghai Public Health Clinical Center from April 8th to July 29, 2013. 22.2% of the patients were found to have live poultry contact history and 80% were aged male patients with multiple co-morbidities including diabetes, hypertension and/or chronic obstructive pulmonary disease (COPD). This group of patients was admitted to the clinical center around 10 days after disease onset. According to laboratory examinations, increased C reactive protein (CRP), Procalcitonin (PCT), Plasma thromboplastin antecedent (PTA) and virus positive time (days) were indicative of patients'' mortality. After multivariate analysis, only CRP level showed significant prediction of mortality (P = 0.013) while results of prothrombin time (PT) analysis almost reached statistical significance (P = 0.056).

Conclusions

H7N9 infection induced pneumonia of different severity ranging from mild to severe pneumonia or acute lung injury/acute respiratory distress syndrome to multiple organ failure. Certain laboratory parameters such as plasma CRP, PCT, PTA and virus positive days predicted mortality of H7N9 infection and plasma CRP is an independent predictor of mortality in these patients.  相似文献   

9.
Peptides derived from conserved heptad repeat (HR) regions of paramyxovirus fusion (F) proteins inhibit viral fusion by interfering with the formation of the fusogenic six-helix bundle structure. Peptide efficacy is affected by the strength of the peptide association with the target virus''s complementary HR region. Here, we show that a second basis for peptide efficacy lies in the kinetics of F activation by the homotypic attachment protein: efficient F activation by the attachment protein shortens the period during which antiviral molecules targeting intermediate states of F may act, thereby modulating the effectiveness of inhibitory peptides. These results highlight new issues to be considered in developing strategies for fusion inhibitors.  相似文献   

10.
11.
2016年10月以来,我国感染甲型H7N9流感病例数量急剧增加,截至日前,内地已新增460例病例,已死亡78例,引起了国内外的密切关注。H7N9病毒一旦获得持续人传人的能力,将造成流感的大流行。因此,研发安全有效的H7N9流感疫苗具有重要意义。本文就国内外目前处于临床试验阶段以及已有临床试验结果的H7N9流感疫苗做一综述。  相似文献   

12.
13.
Avian-origin influenza A (H7N9) viruses emerged as human pathogens in China in early 2013 and have killed >100 persons. Influenza vaccines are mainly manufactured using egg-based technology which could not meet the surging demand during influenza pandemics. In this study, we evaluated cell-based influenza H7N9 vaccines in ferrets. An egg-derived influenza H7N9 reassortant vaccine virus was adapted in MDCK cells. Influenza H7N9 whole virus vaccine antigen was manufactured using a microcarrier-based culture system. Immunogenicity and protection of the vaccine candidates with three different formulations (300μg aluminum hydroxide, 1.5μg HA, and 1.5μg HA plus 300μg aluminum hydroxide) were evaluated in ferrets. In ferrets receiving two doses of vaccination, geometric mean titers of hemagglutination (HA) inhibition and neutralizing antibodies were <10 and <40 for the control group (adjuvant only), 17 and 80 for the unadjuvanted (HA only) group, and 190 and 640 for the adjuvanted group (HA plus adjuvant), respectively. After challenge with wild-type influenza H7N9 viruses, virus titers in respiratory tracts of the adjuvanted group were significantly lower than that in the control, and unadjuvanted groups. MDCK cell-derived influenza H7N9 whole virus vaccine candidate is immunogenic and protective in ferrets and clinical development is highly warranted.  相似文献   

14.
Wu  Yifan  Hu  Jingkai  Jin  Xuanjiang  Li  Xiao  Wang  Jinfeng  Zhang  Mengmeng  Chen  Jianglin  Xie  Shumin  Qi  Wenbao  Liao  Ming  Jia  Weixin 《中国病毒学》2021,36(5):1124-1132
Virologica Sinica - No avian H7N9 outbreaks have occurred since the introduction of H7N9 inactivated vaccine in the fall of 2017. However, H7N9 is still prevalent in poultry. To surveil the...  相似文献   

15.
16.
The recent outbreak of H7N9 influenza virus infections in humans in China has raised concerns about the pandemic potential of this strain. Here, we test the efficacy of H3 stalk-based chimeric hemagglutinin universal influenza virus vaccine constructs to protect against H7N9 challenge in mice. Chimeric hemagglutinin constructs protected from viral challenge in the context of different administration routes as well as with a generic oil-in-water adjuvant similar to formulations licensed for use in humans.  相似文献   

17.

Background

Concern for a pandemic caused by a newly emerged avian influenza A virus has led to clinical trials with candidate vaccines as preparation for such an event. Most trials have involved vaccines for influenza A (H5N1), A (H7N7) or A (H9N2).

Objective

To evaluate dosage-related safety and immunogenicity of an inactivated influenza A (H7N7) vaccine in humans.

Design

One hundred twenty-five healthy young adults were randomized to receive two doses intramuscularly of placebo or 7.5, 15, 45 or 90 µg of HA of an inactivated subunit influenza A (H7N7) vaccine (25 per group), four weeks apart. Reactogenicity was evaluated closely for one week and for any adverse effect for six months after each dose. Serum hemagglutination-inhibiting and neutralizing antibody responses were determined four weeks after each dose and at six months.

Results

Reactogenicity evaluations indicated the vaccinations were well tolerated. Only one subject developed a ≥4-fold serum hemagglutination-inhibition (HAI) antibody response and a final titer of ≥1∶40 four weeks after dose two and only five subjects developed a neutralizing antibody rise and a final titer of ≥1∶40 in tests performed at a central laboratory. Four of the five were given the 45 or 90 µg HA dosage. A more sensitive HAI assay at the study site revealed a dose-response with increasing HA dosage but only 36% in the 90 µg HA group developed a ≥4-fold rise in antibody in this test and only one of these achieved a titer of ≥1∶32.

Conclusion

This inactivated subunit influenza A (H7N7) vaccine was safe but poorly immunogenic in humans.

Trials Registration

ClinicalTrials.gov NCT00546585  相似文献   

18.
Sporadic human infections by a novel H7N9 virus occurred over a large geographic region in China. In this study, we show that Newcastle disease virus (NDV)-vectored H7 (NDV-H7) and NDV-H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively. Notably, a baculovirus-expressed H7 protein failed to protect chickens from H7N9 virus infection.  相似文献   

19.
During surveillance programs in Korea between January 2006 and March 2011, 31 H7 avian influenza viruses were isolated from wild birds and domestic ducks and genetically characterized using large-scale sequence data. All Korean H7 viruses belonged to the Eurasian lineage, which showed substantial genetic diversity, in particular in the wild birds. The Korean H7 viruses from poultry were closely related to those of wild birds. Interestingly, two viruses originating in domestic ducks in our study had the same gene constellations in all segment genes as viruses originating in wild birds. The Korean H7 isolates contained avian-type receptors (Q226 and G228), no NA stalk deletion (positions 69–73), no C-terminal deletion (positions 218–230) in NS1, and no substitutions in PB2-627, PB1-368, and M2-31, compared with H7N9 viruses. In pathogenicity experiments, none of the Korean H7 isolates tested induced clinical signs in domestic ducks or mice. Furthermore, while they replicated poorly, with low titers (10 0.7–1.3EID50/50 µl) in domestic ducks, all five viruses replicated well (up to 7–10 dpi, 10 0.7–4.3EID50/50 µl) in the lungs of mice, without prior adaptation. Our results suggest that domestic Korean viruses were transferred directly from wild birds through at least two independent introductions. Our data did not indicate that wild birds carried poultry viruses between Korea and China, but rather, that wild-type H7 viruses were introduced several times into different poultry populations in eastern Asia.  相似文献   

20.
H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号