首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Biofilms are highly structured, surface‐associated communities. A hallmark of biofilms is their extraordinary resistance to antimicrobial agents that is activated during early biofilm development of Pseudomonas aeruginosa and requires the regulatory hybrid SagS and BrlR, a member of the MerR family of multidrug efflux pump activators. However, little is known about the mechanism by which SagS contributes to BrlR activation or drug resistance. Here, we demonstrate that ΔsagS biofilm cells harbour the secondary messenger c‐di‐GMP at reduced levels similar to those observed in wild‐type cells grown planktonically rather than as biofilms. Restoring c‐di‐GMP levels to wild‐type biofilm‐like levels restored brlR expression, DNA binding by BrlR, and recalcitrance to killing by antimicrobial agents of ΔsagS biofilm cells. We likewise found that increasing c‐di‐GMP levels present in planktonic cells to biofilm‐like levels (≥ 55 pmol mg?1) resulted in planktonic cells being significantly more resistant to antimicrobial agents, with increased resistance correlating with increased brlR, mexA, and mexE expression and BrlR production. In contrast, reducing cellular c‐di‐GMP levels of biofilm cells to ≤ 40 pmol mg?1 correlated with increased susceptibility and reduced brlR expression. Our findings suggest that a signalling pathway involving a specific c‐di‐GMP pool regulated by SagS contributes to the resistance of P. aeruginosa biofilms.  相似文献   

4.
5.
Many human diseases, including cystic fibrosis lung infections, are caused or exacerbated by bacterial biofilms. Specialized modes of motility, including swarming and twitching, allow gram-negative bacteria to spread across surfaces and form biofilms. Compounds that inhibit these motilities could slow the spread of biofilms, thereby allowing antibiotics to work better. We previously demonstrated that a set of plant-derived triterpenes, including oleanolic acid and ursolic acid, inhibit formation of Escherichia coli and Pseudomonas aeruginosa biofilms, and alter expression of genes involved in chemotaxis and motility. In the present study, we have prepared a series of analogs of oleanolic acid. The analogs were evaluated against clinical isolates of E. coli and P. aeruginosa in biofilm formation assays and swarming assays. From these analogs, compound 9 was selected as a lead compound for further development. Compound 9 inhibits E. coli biofilm formation at 4 µg/mL; it also inhibits swarming at ≤1 µg/mL across multiple clinical isolates of P. aeruginosa, E. coli, Burkholderia cepacia, and Salmonella enterica, and at <0.5 µg/mL against multiple agricultural strains. Compound 9 also potentiates the activity of the antibiotics tobramycin and colistin against swarming P. aeruginosa; this is notable, as tobramycin and colistin are inhaled antibiotics commonly used to treat P. aeruginosa lung infections in people with cystic fibrosis. qPCR experiments suggested that 9 alters expression of genes involved in regulating Type IV pili; western blots confirmed that expression of Type IV pili components PilA and PilY1 decreases in P. aeruginosa in the presence of 9.  相似文献   

6.
The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10–40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.  相似文献   

7.
Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20–20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies <1,000 Hz. Biofilms vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p < 0.05). Biofilms treated with tobramycin and vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610Hz, 650Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p < 0.05). CLSM imaging further confirmed these findings. Low frequency vibrations assisted tobramycin in killing P. aeruginosa biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.KEY WORDS: alginate, biofilm, Pseudomonas, tobramycin, vibration  相似文献   

8.
Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4∶1 (w/w) combination of fosfomycin and tobramycin (F∶T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F∶T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F∶T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F∶T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F∶T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F∶T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F∶T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F∶T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F∶T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.  相似文献   

9.
Genetically susceptible bacteria become antibiotic tolerant during chronic infections, and the mechanisms responsible are poorly understood. One factor that may contribute to differential sensitivity in vitro and in vivo is differences in the time-dependent tobramycin concentration profile experienced by the bacteria. Here, we examine the proteome response induced by subinhibitory concentrations of tobramycin in Pseudomonas aeruginosa cells grown under planktonic conditions. These efforts revealed increased levels of heat shock proteins and proteases were present at higher dosage treatments (0.5 and 1 μg/ml), while less dramatic at 0.1 μg/ml dosage. In contrast, many metabolic enzymes were significantly induced by lower dosages (0.1 and 0.5 μg/ml) but not at 1 μg/ml dosage. Time course proteome analysis further revealed that the increase of heat shock proteins and proteases was most rapid from 15 min to 60 min, and the increased levels sustained till 6 h (last time point tested). Heat shock protein IbpA exhibited the greatest induction by tobramycin, up to 90-fold. Nevertheless, deletion of ibpA did not enhance sensitivity to tobramycin. It seemed possible that the absence of sensitization could be due to redundant functioning of IbpA with other proteins that protect cells from tobramycin. Indeed, inactivation of two heat shock chaperones/proteases in addition to ibpA in double mutants (ibpA/clpB, ibpA/PA0779 and ibpA/hslV) did increase tobramycin sensitivity. Collectively, these results demonstrate the time- and concentration-dependent nature of the P. aeruginosa proteome response to tobramycin and that proteome modulation and protein redundancy are protective mechanisms to help bacteria resist antibiotic treatments.The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the natural environment and causes human infections (1). P. aeruginosa can metabolize various carbon and nitrogen compounds and persists under nutrient-poor and hostile growth environments (2, 3). One example is P. aeruginosa pulmonary infection of cystic fibrosis (CF) patients. Despite stress induced by host defenses and high concentrations of antibiotics, P. aeruginosa cells are able to persistently colonize CF airways (4).The aminoglycoside tobramycin is a front-line drug currently used in the treatment of P. aeruginosa in CF and other diseases. It is supplied in the forms of inhaled solution (TOBI) and intravenous injection. The tobramycin concentrations in airways after 300-mg dosage TOBI inhalation can reach 1,000 μg per g of sputum (5, 6). This concentration is in the range of 10 to 1,000 times of the minimal inhibitory concentration (MIC) for P. aeruginosa clinical isolates tested ex vivo (6). However, even with such high tobramycin concentrations, chronic P. aeruginosa infections are rarely eradicated (6). This is true even when the infecting bacteria are antibiotic sensitive, as is the case early in disease (7).One possible reason for P. aeruginosa persistence in vivo could relate to the time dependence of local concentrations of tobramycin experienced by P. aeruginosa in CF patient airways. Many factors, including inflammatory responses, blood and lymphatic circulations, and air flow distribution (for inhaled antibiotics), can alter the local antibiotic concentrations. In addition, P. aeruginosa cells can form biofilms in CF lungs and other infection sites (8), and biofilm exopolysaccharide layers may slow the diffusion of tobramycin (9, 10). P. aeruginosa cells in the inner layers of biofilms may experience lower concentrations and more gradual increase of tobramycin levels than those in outer layers (10, 11). Furthermore, even if final tobramycin concentration levels inside the biofilm eventually grow to match the highest levels experienced elsewhere, bacteria in these inner regions have experienced a slower increase, during which time proteome levels could be altered to promote the “adapted resistant state” (12). Adaptive resistance can also be induced in planktonic (free-living) P. aeruginosa (13, 14), and conventional MIC assays are not designed to measure this.Once induced, the adaptive resistance confers bacteria higher resistance to antibiotic treatments (13, 14) and is associated with decreased clinical antibiotic treatment efficacy (15). Interestingly, the adaptive resistance is time dependent and reversible. Typical adaptive resistance was observed starting 1 h after antibiotic exposure, and the drug susceptibility was regained after 36 h intervals (14, 15). Thus, adaptive resistance mechanisms may contribute in part to the disparity of in vivo persistence and ex vivo susceptibility to antibiotics in MIC tests.As an initial step toward defining adaptive resistance mechanisms, we investigated the time- and concentration-dependence of P. aeruginosa proteome response to tobramycin in planktonic conditions. Since the most effective protective responses may operate before killing begins and the rate of change of drug levels is likely to depend on ambient conditions, we studied bacteria exposed to low, subinhibitory levels of tobramycin (0.1, 0.5, and 1.0 μg/ml) at a range of time points (15, 60, 120, and 360 min) after exposure. The candidate proteome marker of P. aeruginosa for tobramycin response, heat shock protein IbpA, was further investigated with genetic mutagenesis and MIC assays.  相似文献   

10.
Aim: To determine if exposure of Pseudomonas aeruginosa biofilms to chloraminated drinking water can lead to individual bacteria with resistance to antibiotics. Methods and Results: Biofilms of P. aeruginosa PA14 were grown in drinking water in a Kadouri drip‐fed reactor; the biofilms were treated with either 0·5 mg l‐1 or 1·0 mg l‐1 of chloramine for 15 or 21 days; control biofilms were grown in water without chloramine. Fewer isolates with antibiotic resistance were obtained from the chloramine‐treated biofilms as compared to the control. Minimum inhibitory concentrations (MIC) for selected antibiotic‐resistant isolates were determined using ciprofloxacin, tobramycin, gentamicin, rifampicin and chloramphenicol. All of the isolates tested had increased resistance over the wildtype to ciprofloxacin, rifampicin and chloramphenicol, but were not resistant to tobramycin or gentamicin. Conclusions: Under these test conditions, there was no detectable increase in antibiotic resistance in P. aeruginosa exposed as biofilms to disinfectant residues in chloraminated drinking water. Significance and Impact of the study: Chloramine in drinking water, while unable to kill biofilm bacteria, does not increase the potential of P. aeruginosa to become resistant to antibiotics.  相似文献   

11.
Six different cathelicidin-derived peptides were compared to tobramycin for antibacterial and anti-biofilm effects against S. aureus, P. aeruginosa, and S. maltophilia strains isolated from cystic fibrosis patients. Overall, SMAP-29, BMAP-28, and BMAP-27 showed relevant antibacterial activity (MIC50 4-8 μg/ml), and in some cases higher than tobramycin. In contrast, indolicidin, LL-37, and Bac7(1-35) showed no significant antimicrobial activity (MIC50 > 32 μg/ml). Killing kinetics experiments showed that in contrast to tobramycin the active cathelicidin peptides exert a rapid bactericidal activity regardless of the species tested. All three peptides significantly reduced biofilm formation by S. maltophilia and P. aeruginosa strains at 1/2× MIC, although at a lower extent than tobramycin. In addition, BMAP-28, as well as tobramycin, was also active against S. aureus biofilm formation. Preformed biofilms were significantly affected by bactericidal SMAP-29, BMAP-27 and BMAP-28 concentrations, although at a lesser extent than tobramycin. Overall, our results indicate the potential of some cathelicidin-derived peptides for the development of novel therapeutic agents for cystic fibrosis lung disease.  相似文献   

12.
Pseudomonas aeruginosa is one of the major nosocomial pathogen that can causes a wide variety of acute and chronic infections P. aeruginosa is a dreaded bacteria not just because of the high intrinsic and acquired antibiotic resistance rates but also the biofilm formation and production of multiple virulence factors. We investigated the in vitro activities of antibiotics (ceftazidime, tobramycin, ciprofloxacin, doripenem, piperacillin and colistin) and antimicrobial cationic peptides (AMPs; LL-37, CAMA: cecropin(1–7)-melittin A(2–9) amide, melittin, defensin and magainin-II) alone or in combination against biofilms of laboratory strain ATCC 27853 and 4 clinical strains of P. aeruginosa. The minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentrations (MBEC) were determined by microbroth dilution technique. The MBEC values of antibiotics and AMPs were 80–>5120 and 640–>640 mg/L, respectively. When combined with the LL-37 or CAMA at 1/10× MBEC, the MBEC values of antibiotics that active against biofilms, were decreased up to 8-fold. All of the antibiotics, and AMPs were able to inhibit the attachment of bacteria at the 1/10× MIC and biofilm formation at 1× or 1/10× MIC concentrations. Time killing curve studies showed 3-log10 killing against biofilms in 24 h with almost all studied antibiotics and AMPs. Synergism were seen in most of the studied combinations especially CAMA/LL-37 + ciprofloxacin against at least one or two strains’ biofilms. Since biofilms are not affected the antibiotics at therapeutic concentrations, using a combination of antimicrobial agents including AMPs, or inhibition of biofilm formation by blocking the attachment of bacteria to surfaces might be alternative methods to fight with biofilm associated infections.  相似文献   

13.
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting.  相似文献   

14.
15.
Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.  相似文献   

16.
Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance.Subject terms: Microbiology, Diseases  相似文献   

17.
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH.  相似文献   

18.
Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC?≤?2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC?≥?8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.  相似文献   

19.
20.

Background

Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.

Methodology/Principal Findings

One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10−5 on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.

Conclusions

By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号