共查询到20条相似文献,搜索用时 109 毫秒
1.
Jessika Füssel Phyllis Lam Gaute Lavik Marlene M Jensen Moritz Holtappels Marcel Günter Marcel MM Kuypers 《The ISME journal》2012,6(6):1200-1209
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. 相似文献
2.
Hendrik J. T. Hoving Bruce H. Robison 《Proceedings. Biological sciences / The Royal Society》2012,279(1747):4559-4567
Vampire squid (Vampyroteuthis infernalis) are considered phylogenetic relics with cephalopod features of both octopods and squids. They lack feeding tentacles, but in addition to their eight arms, they have two retractile filaments, the exact functions of which have puzzled scientists for years. We present the results of investigations on the feeding ecology and behaviour of Vampyroteuthis, which include extensive in situ, deep-sea video recordings from MBARI''s remotely operated vehicles (ROVs), laboratory feeding experiments, diet studies and morphological examinations of the retractile filaments, the arm suckers and cirri. Vampire squid were found to feed on detrital matter of various sizes, from small particles to larger marine aggregates. Ingested items included the remains of gelatinous zooplankton, discarded larvacean houses, crustacean remains, diatoms and faecal pellets. Both ROV observations and laboratory experiments led to the conclusion that vampire squid use their retractile filaments for the capture of food, supporting the hypothesis that the filaments are homologous to cephalopod arms. Vampyroteuthis'' feeding behaviour is unlike any other cephalopod, and reveals a unique adaptation that allows these animals to spend most of their life at depths where oxygen concentrations are very low, but where predators are few and typical cephalopod food is scarce. 相似文献
3.
Carolin R Loescher Tobias Gro?kopf Falguni D Desai Diana Gill Harald Schunck Peter L Croot Christian Schlosser Sven C Neulinger Nicole Pinnow Gaute Lavik Marcel M M Kuypers Julie LaRoche Ruth A Schmitz 《The ISME journal》2014,8(11):2180-2192
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future. 相似文献
4.
J. Michael Beman Sonia Marie Vargas Samantha Vazquez Jesse Mac Wilson Angela Yu Ariadna Cairo Elisabet Perez-Coronel 《Environmental microbiology》2021,23(6):2765-2781
Oceanic oxygen minimum zones (OMZs) play a pivotal role in biogeochemical cycles due to extensive microbial activity. How OMZ microbial communities assemble and respond to environmental variation is therefore essential to understanding OMZ functioning and ocean biogeochemistry. Sampling along depth profiles at five stations in the eastern tropical North Pacific Ocean (ETNP), we captured systematic variations in dissolved oxygen (DO) and associated variables (nitrite, chlorophyll, and ammonium) with depth and between stations. We quantitatively analysed relationships between oceanographic gradients and microbial community assembly and activity based on paired 16S rDNA and 16S rRNA sequencing. Overall microbial community composition and diversity were strongly related to regional variations in density, DO, and other variables (regression and redundancy analysis r2 = 0.68–0.82), displaying predictable patterns with depth and between stations. Although similar factors influenced the active community, diversity was substantially lower within the OMZ. We also identified multiple active microbiological networks that tracked specific gradients or features – particularly subsurface ammonium and nitrite maxima. Our findings indicate that overall microbial community assembly is consistently shaped by hydrography and biogeochemistry, while active segments of the community form discrete networks inhabiting distinct portions of the water column, and that both are tightly tuned to environmental conditions in the ETNP. 相似文献
5.
The structure and diversity of bacterial communities associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific was studied through phylogenetic analysis. Clone libraries of 16S rRNA gene fragments were constructed using environmental DNA collected from the OMZ (60 m and 200 m), the sea surface (10 m), and the deep oxycline (450 m). At the class level, the majority of sequences affiliated to the gamma- (53.7%) and alpha-Proteobacteria (19.7%), and to the Bacteroidetes (11.2%). A vertical partitioning of the bacterial communities was observed, with main differences between the suboxic OMZ and the more oxygenated surface and deep oxycline waters. At the surface, the microbial community was predominantly characterized by SAR86, Loktanella and unclassified Flavobacteriaceae, whereas the deeper layer was dominated by Sulfitobacter and unclassified Alteromonadaceae. In the OMZ, major constituents affiliated to the marine SAR11 clade and to thiotrophic gamma-symbionts (25% of all sequences), a group not commonly found in pelagic waters. Sequences affiliating to the phylum Chloroflexi, to the AGG47 and SAR202 clades, to the delta-Proteobacteria, to the Acidobacteria, and to the 'anammox group' of the Planctomycetes were found exclusively in the OMZ. The bacterial richness in the OMZ was higher than in the oxic surface and deeper oxycline, as revealed by rarefaction analysis and the Chao1 richness estimator (surface: 45 +/- 8, deeper oxycline: 76 +/- 26; OMZ (60 m): 97 +/- 33, OMZ (200 m): 109 +/- 31). OMZ bacterial diversity indices (Fisher's: approximately 30 +/- 5, Shannon's: approximately 3.31, inverse Simpson's: approximately 20) were similar to those found in other pelagic marine environments. Thus, our results indicate a distinct and diverse bacterial community within the OMZ, with presumably novel and yet uncultivated bacterial lineages. 相似文献
6.
Angela Pitcher Laura Villanueva Ellen C Hopmans Stefan Schouten Gert-Jan Reichart Jaap S Sinninghe Damsté 《The ISME journal》2011,5(12):1896-1904
Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5 μ, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400 m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ. 相似文献
7.
Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific 总被引:1,自引:0,他引:1
The major sites of water column denitrification in the ocean are oxygen minimum zones (OMZ), such as one in the eastern South Pacific (ESP). To understand the structure of denitrifying communities in the OMZ off Chile, denitrifier communities at two sites in the Chilean OMZ (Antofagasta and Iquique) and at different water depths were explored by terminal restriction fragment length polymorphism analysis and cloning of polymerase chain reaction (PCR)-amplified nirS genes. NirS is a functional marker gene for denitrification encoding cytochrome cd1-containing nitrite reductase, which catalyses the reduction of nitrite to nitric oxide, the key step in denitrification. Major differences were found between communities from the two geographic locations. Shifts in community structure occurred along a biogeochemical gradient at Antofagasta. Canonical correspondence analysis indicated that O2, NO3-, NO2- and depth were important environmental factors governing these communities along the biogeochemical gradient in the water column. Phylogenetic analysis grouped the majority of clones from the ESP in distinct clusters of genes from presumably novel and yet uncultivated denitrifers. These nirS clusters were distantly related to those found in the water column of the Arabian Sea but the phylogenetic distance was even higher compared with environmental sequences from marine sediments or any other habitat. This finding suggests similar environmental conditions trigger the development of denitrifiers with related nirS genotypes despite large geographic distances. 相似文献
8.
对全球大洋氮循环的研究发现,大洋输入和输出的氮存在严重的不平衡,所固定的氮中有相当一部分被还原为N2或N2O从大洋中流失,而海洋最小含氧带(OMZ)被认为是发生氮流失的最主要区域,通过反硝化作用和厌氧氨氧化作用,固定氮在OMZ海区内损失量可达40~450 Tg·a-1.对不同海区OMZ内固定氮损失的两种主要作用总结发现,异养反硝化作用在热带太平洋东部、阿拉伯海的OMZ内以及海洋沉积物内占有显著优势,在智利、秘鲁沿岸海域及阿拉伯海域也已发现自养反硝化作用的存在;而在黑海、非洲西南部的本格拉上升流、智利北部沿岸等地,厌氧氨氧化作用强烈,且其在陆架区的作用强度和面积要大于大洋区.OMZ氮的流失除受氮流失过程自身影响外,固氮作用、硝化作用、硝酸盐异化还原作用等都可能对OMZ海区内氮收支不平衡造成影响.其中固氮作用的影响最不能忽视,其在全球OMZ内固定的氮的总量可达15~40 Tg·a-1,是对OMZ氮流失量的重要补充.区分反硝化作用和厌氧氨氧化作用对OMZ氮流失的相对贡献,明确氮流失的另一产物N2O的形成机制和定量评估方法是当前OMZ氮流失研究中存在的最主要问题.本文针对存在问题提出了相应的研究设想,以期为海洋最小含氧带的研究提供参考. 相似文献
9.
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. 相似文献
10.
We assessed the abundance and molecular phylogeny of archaeoplankton in the oxygen minimum zone (OMZ) of the eastern tropical South Pacific, using specific-probe hybridization and phylogenetic analysis of the SSU-rRNA gene. Euryarchaea from Marine Group-II (MG-II) were most abundant in the surface oxic layer, representing 4.0±2.0% of the total picoplankton, while crenarchaea from Group I.1a (G-I.1a) peaked at the oxyclines, with a relative abundance of 8.1±4.3% (upper oxycline). In most of the stations, the abundance of both the groups decreased at the core of the OMZ, where a secondary maximum in cell density is commonly observed. The majority of the phylotypes affiliated with one of three groups: MG-II, euryarchaeal Marine Group-III (MG-III) and G-I.1a (75.9%, 12.8% and 10.3%, respectively). While MG-II phylotypes were found throughout the water column and G-I.1a ones were predominantly found within the oxyclines, MG-III phylotypes came almost exclusively from the OMZ core. Higher archaeal richness was found within the OMZ, with some of the exclusive lineages grouping with sequences from the deep ocean and hydrothermal vents. Moreover, G-I.1a sequences from the OMZ grouped into a different subcluster from the aerobic ammonium-oxidizer Nitrosopumilus maritimus. Thus, the community structure of archaeoplankton in OMZs is rich and distinct, with G-I.1a members particularly prominent at the oxyclines. 相似文献
11.
12.
Specimens of the deep-sea benthic shrimp Nematocarcinus gracilis were collected from 900 m to 1000 m in the Arabian Sea, close to where the permanent oxygen minimum zone meets the sea floor. Lipid profiles, encompassing total lipid, lipid class and fatty acid composition, were compared with previously reported crustacean lipid assays and provided an insight into the life history of the species. The major storage lipid in N. gracilis was triglyceride, supporting the supposition that this species exists in benthic regions. Neutral lipid levels were commensurate with N. gracilis being an opportunistic feeder. Fatty acid composition was typical of an organism with a diet based on an ultimately photosynthetic source of organic carbon, but also reflected the reduction in the availability of labile organic carbon (in the case of lipid, highly unsaturated fatty acids) in the deep sea. 相似文献
13.
E. Hernández‐Miranda R. A. Quiñones G. Aedo A. Valenzuela N. Mermoud C. Román F. Yañez 《Journal of fish biology》2010,76(7):1543-1564
A massive beaching and mortality of fishes occurred in Coliumo Bay, a shallow bay located along the coast of the eastern South Pacific Ocean on 3 January 2008. This stranding was a consequence of an abrupt decrease in the dissolved oxygen concentration throughout the whole water column, due to the effect of intense upwelling along the coast off central‐southern Chile. The main objectives of this study were: (1) to characterize taxonomically and biologically the fish species assemblage present in this beaching; (2) to evaluate several physiological indicators for the condition of the beached species at the time of their death; and (3) to assess the possible cause–effect mechanisms involved in the fishes death and the changes that took place in the fish community throughout the time. In this beaching, 26 fish species were identified: 23 teleosts, one myxiniform and two elasmobranchs. Most beached specimens were juveniles. Haematological and histological evidence indicate that severe hypoxia that lasted for at least 48 h was the most plausible cause of death. The main conclusion of this study is that the presence of oxygen‐poor equatorial sub‐surface water in the shallow coastal zone due to intense regional‐scale upwelling caused the fish stranding. Although the effect of the hypoxic event was severe for the fish assemblage of Coliumo Bay, the rapid recuperation observed suggests that hypoxic events at the local spatial scale can be buffered by migration processes from the fish community inhabiting close by areas non‐affected by low oxygen conditions. The effect that severe hypoxic events may have on larger spatial scales remains unknown. 相似文献
14.
15.
Knowledge of marine phages is highly biased toward double-stranded DNA (dsDNA) phages; however, recent metagenomic surveys have also identified single-stranded DNA (ssDNA) phages in the oceans. Here, we describe two complete ssDNA phage genomes that were reconstructed from a viral metagenome from 80 m depth at the Bermuda Atlantic Time-series Study (BATS) site in the northwestern Sargasso Sea and examine their spatial and temporal distributions. Both genomes (SARssφ1 and SARssφ2) exhibited similarity to known phages of the Microviridae family in terms of size, GC content, genome organization and protein sequence. PCR amplification of the replication initiation protein (Rep) gene revealed narrow and distinct depth distributions for the newly described ssDNA phages within the upper 200 m of the water column at the BATS site. Comparison of Rep gene sequences obtained from the BATS site over time revealed changes in the diversity of ssDNA phages over monthly time scales, although some nearly identical sequences were recovered from samples collected 4 years apart. Examination of ssDNA phage diversity along transects through the North Atlantic Ocean revealed a positive correlation between genetic distance and geographic distance between sampling sites. Together, the data suggest fundamental differences between the distribution of these ssDNA phages and the distribution of known marine dsDNA phages, possibly because of differences in host range, host distribution, virion stability, or viral evolution mechanisms and rates. Future work needs to elucidate the host ranges for oceanic ssDNA phages and determine their ecological roles in the marine ecosystem. 相似文献
16.
Pia H Moisander Ruifeng Zhang Edward A Boyle Ian Hewson Joseph P Montoya Jonathan P Zehr 《The ISME journal》2012,6(4):733-744
Growth limitation of phytoplankton and unicellular nitrogen (N2) fixers (diazotrophs) were investigated in the oligotrophic Western South Pacific Ocean. Based on change in abundances of nifH or 23S rRNA gene copies during nutrient-enrichment experiments, the factors limiting net growth of the unicellular diazotrophs UCYN-A (Group A), Crocosphaera watsonii, γ-Proteobacterium 24774A11, and the non-diazotrophic picocyanobacterium Prochlorococcus, varied within the region. At the westernmost stations, numbers were enhanced by organic carbon added as simple sugars, a combination of iron and an organic chelator, or iron added with phosphate. At stations nearest the equator, the nutrient-limiting growth was not apparent. Maximum net growth rates for UCYN-A, C. watsonii and γ-24774A11 were 0.19, 0.61 and 0.52 d−1, respectively, which are the first known empirical growth rates reported for the uncultivated UCYN-A and the γ-24774A11. The addition of N enhanced total phytoplankton biomass up to 5-fold, and the non-N2-fixing Synechococcus was among the groups that responded favorably to N addition. Nitrogen was the major nutrient-limiting phytoplankton biomass in the Western South Pacific Ocean, while availability of organic carbon or iron and organic chelator appear to limit abundances of unicellular diazotrophs. Lack of phytoplankton response to nutrient additions in the Pacific warm pool waters suggests diazotroph growth in this area is controlled by different factors than in the higher latitudes, which may partially explain previously observed variability in community composition in the region. 相似文献
17.
Desmotersia levinae gen. n., sp. n. is proposed, based on material found in bathyal oxygen minimum zone sediments off the coast of Peru. Desmotersia closely resembles Richtersia in the animals’ general appearance and in spiny ornamentation of the body cuticle, but clearly differs in stoma structure and by the presence of a dorsal tooth. The systematic positions of the two genera are discussed, since Desmotersia apparently forms a link between Selachinematidae and Desmodoridae. Desmotersia levinae is characterized by a variety of spiny ornamentations anteriorly formed by bipartite spines arranged into a fin-like picket fence, by a head with an asymmetrical cephalic capsule, presence of two closely spaced ventral longitudinal rows of copulatory thorns, and by 2-4 ventral thorns in mid-tail positions on the male. The interaction between the new species and its habitat is discussed. 相似文献
18.
Laetitia Bernard Lydie Chapuis-Lardy Tantely Razafimbelo Malalatiana Razafindrakoto Anne-Laure Pablo Elvire Legname Julie Poulain Thomas Brüls Michael O'Donohue Alain Brauman Jean-Luc Chotte Eric Blanchart 《The ISME journal》2012,6(1):213-222
Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. 相似文献
19.
Stefanie Schumacher Frans J. Jorissen Delphine Dissard Kate E. Larkin Andrew J. Gooday 《Marine Micropaleontology》2007
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. Samples were taken from 136 m to 1870 m water depth during the intermonsoon season of 2003 (March–April). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (≈ 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterised by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats. The contrast between faunas typical for the upper part of the OMZ, and cosmopolitan faunas in the lower part of the OMZ, may be explained by a difference in the stability of dysoxic conditions over geological time periods. The core of the OMZ has been characterised by prolonged periods of stable, strongly dysoxic conditions. The lower part of the OMZ, on the contrary, has been much more variable over time-scales of 1000s and 10,000 years because of changes in surface productivity and a fluctuating intensity of NADW circulation. We suggest that, as a consequence, well-adapted, shallow infaunal taxa occupy the upper part of the OMZ, whereas in the lower part of the OMZ, cosmopolitan deep infaunal taxa have repeatedly colonised these more intermittent low oxygen environments. 相似文献
20.
Vertical distribution of Pleuromamma (Copepoda: Metridinidae) across the eastern North Pacific Ocean
Vertical distributions of six species of Pleuromamma at ten stations across the eastern North Pacific Ocean from Honolulu to San Diego were determined from oblique Longhurst-Hardy Plankton Recorder tows to 650 m (350–450 m in the California Current). Vertical resolution was 20 m below 200 m and 5–10 m above. There was considerable overlap in surface layer distributions at night among all co-occurring species; daytime distributions showed less overlap. All species generally occurred deeper both day and night as distance offshore increased. The proportion of a species' population that remained at daytime depths during the night decreased with distance offshore. Warm water species penetrated into the California Current and nearshore region to a much greater extent than cool water species entered central gyre waters. 相似文献