首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

2.
Until recently, denitrification was thought to be the only significant pathway for N2 formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of 15N-labeled NH4+, NO3, and NO2 (and 14N analogues), production of 29N2 and 30N2 was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of 29N2 in the presence of 15NH4+ and either 14NO3 or 14NO2 confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO2. Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO2 or indirect reduction, following the initial reduction of NO3. Whether NO2 was directly present at 800 μM or it accumulated at 3 to 20 μM (from the reduction of NO3), the rate of 29N2 formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO2. We observed a shift in the significance of anaerobic ammonium oxidation to N2 formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system.  相似文献   

3.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

4.
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2 and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.  相似文献   

5.
The anaerobic ammonia-oxidizing activity of the planctomycete Candidatus “Brocadia anammoxidans” was not inhibited by NO concentrations up to 600 ppm and NO2 concentrations up to 100 ppm. B. anammoxidans was able to convert (detoxify) NO, which might explain the high NO tolerance of this organism. In the presence of NO2, the specific ammonia oxidation activity of B. anammoxidans increased, and Nitrosomonas-like microorganisms recovered an NO2-dependent anaerobic ammonia oxidation activity. Addition of NO2 to a mixed population of B. anammoxidans and Nitrosomonas induced simultaneous specific anaerobic ammonia oxidation activities of up to 5.5 mmol of NH4+ g of protein−1 h−1 by B. anammoxidans and up to 1.5 mmol of NH4+ g of protein−1 h−1 by Nitrosomonas. The stoichiometry of the converted N compounds (NO2/NH3 ratio) and the microbial community structure were strongly influenced by NO2. The combined activity of B. anammoxidans and Nitrosomonas-like ammonia oxidizers might be of relevance in natural environments and for technical applications.  相似文献   

6.
The oxidation of NH4+ by Nitrosomonas europaea was insensitive to 10 mM NaClO3 (sodium chlorate) but was strongly inhibited by NaClO2 (sodium chlorite; Ki, 2 μM). The oxidation of NO2 by Nitrobacter winogradskyi was inhibited by both ClO3 and ClO2 (Ki for ClO2, 100 μM). N. winogradskyi reduced ClO3 to ClO2 under both aerobic and anaerobic conditions, and as much as 0.25 mM ClO2 was detected in the culture filtrate. In mixed N. europaea-N. winogradskyi cell suspensions, the oxidation of both NH4+ and NO2 was inhibited in the presence of 10 mM ClO3 after a 2-h lag period, despite the fact that, under these conditions, ClO2 was not detected in the filtrate. The data are consistent with the hypothesis that, in mixed culture, NH4+ oxidation is inhibited by ClO2 produced by reduction of ClO3 by the NO2 oxidizer. The use of ClO3 inhibition of NO2 oxidation in assays of nitrification by mixed populations necessitates cautious interpretation unless it can be shown that the oxidation of NH4+ is not affected.  相似文献   

7.
We examined the rates and sustainability of methyl bromide (MeBr) oxidation in moderately low density cell suspensions (~6 × 107 cells ml−1) of the NH3-oxidizing bacterium Nitrosomonas europaea. In the presence of 10 mM NH4+ and 0.44, 0.22, and 0.11 mM MeBr, the initial rates of MeBr oxidation were sustained for 12, 12, and 24 h, respectively, despite the fact that only 10% of the NH4+, 18% of the NH4+, and 35% of the NH4+, respectively, were consumed. Although the duration of active MeBr oxidation generally decreased as the MeBr concentration increased, similar amounts of MeBr were oxidized with a large number of the NH4+-MeBr combinations examined (10 to 20 μmol mg [dry weight] of cells−1). Approximately 90% of the NH3-dependent O2 uptake activity and the NO2-producing activity were lost after N. europaea was exposed to 0.44 mM MeBr for 24 h. After MeBr was removed and the cells were resuspended in fresh growth medium, NO2 production increased exponentially, and 48 to 60 h was required to reach the level of activity observed initially in control cells that were not exposed to MeBr. It is not clear what percentage of the cells were capable of cell division after MeBr oxidation because NO2 accumulated more slowly in the exposed cells than in the unexposed cells despite the fact that the latter were diluted 10-fold to create inocula which exhibited equal initial activities. The decreases in NO2-producing and MeBr-oxidizing activities could not be attributed directly to NH4+ or NH3 limitation, to a decrease in the pH, to the composition of the incubation medium, or to toxic effects caused by accumulation of the end products of oxidation (NO2 and formaldehyde) in the medium. Additional cooxidation-related studies of N. europaea are needed to identify the mechanism(s) responsible for the MeBr-induced loss of cell activity and/or viability, to determine what percentages of cells damaged by cooxidative activities are culturable, and to determine if cooxidative activity interferes with the regulation of NH3-oxidizing activity.  相似文献   

8.
Identification of Heterotrophic Nitrification in a Sierran Forest Soil   总被引:23,自引:9,他引:14       下载免费PDF全文
A potential for heterotrophic nitrification was identified in soil from a mature conifer forest and from a clear-cut site. Potential rates of NO2 production were determined separately from those of NO3 by using acetylene to block autotrophic NH4+ oxidation and chlorate to block NO2 oxidation to NO3 in soil slurries. Rates of NO2 production were similar in soil from the forest and the clear-cut site and were strongly inhibited by acetylene. The rate of NO3 production was much greater than that of NO2 production, and NO3 production was not significantly affected by acetylene or chlorate. Nitrate production was partially inhibited by cycloheximide, but was not significantly reduced by streptomycin. Neither the addition of ammonium nor the addition of peptone stimulated NO3 production. 15N labeling of the NH4+ pool demonstrated that NO3 was not coming from NH4+. The potential for heterotrophic nitrification in these forest soils was greater than that for autotrophic nitrification.  相似文献   

9.
Nitrate (NO3) and ammonium (NH4+) are the main forms of nitrogen available in the soil for plants. Excessive NH4+ accumulation in tissues is toxic for plants and exclusive NH4+-based nutrition enhances this effect. Ammonium toxicity syndrome commonly includes growth impairment, ion imbalance and chlorosis among others. In this work, we observed high intraspecific variability in chlorophyll content in 47 Arabidopsis thaliana natural accessions grown under 1 mM NH4+ or 1 mM NO3 as N-source. Interestingly, chlorophyll content increased in every accession upon ammonium nutrition. Moreover, this increase was independent of ammonium tolerance capacity. Thus, chlorosis seems to be an exclusive effect of severe ammonium toxicity while mild ammonium stress induces chlorophyll accumulation.  相似文献   

10.

Background and Aims

Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3 nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3 availability are not known.

Methods

Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants.

Key Results

Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3 compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’.

Conclusions

The results indicate that higher NO3 responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’.  相似文献   

11.
Steady state cultures of Anabaena flos-aquae were established over a wide range of phosphate-limited growth rates while N was supplied as either NH3, NO3, or N2 gas. At growth rates greater than 0.03 per hour, rates of gross and net carbon fixation were similar on all N sources. However, at lower growth rates (<0.03 per hour) in the NO3 and N2 cultures, gross photosynthesis greatly exceeded net photosynthesis. The increase in photosynthetic O2 evolution with growth rate was greatest when N requirements were met by NO3 and least when met by NH3. These results were combined with previously reported measurements of cellular chemical composition, N assimilation, and acetylene reduction (Layzell, Turpin, Elrifi 1985 Plant Physiol 78: 739-745) to construct empirical models of carbon and energy flow for cultures grown at 30, 60, and 100% of their maximal growth rate on all N sources. The models suggested that over this growth range, 89 to 100% of photodriven electrons were allocated to biomass production in the NH3 cells, whereas only 49 to 74% and 54 to 90% were partitioned to biomass in the NO3-and N2-grown cells, respectively. The models were used to estimate the relative contribution of active, maintenance, and establishment costs associated with NO3 and N2 assimilation over the entire range of growth rates. The models showed that the relative contribution of the component costs of N assimilation were growth rate dependent. At higher growth rates, the major costs for NO3 assimilation were the active costs, while in N2-fixing cultures the major energetic requirements were those associated with heterocyst establishment and maintenance. It was concluded that compared with NO3 assimilation, N2 fixation was energetically unfavorable due to the costs of heterocyst establishment and maintenance, rather than the active costs of N2 assimilation.  相似文献   

12.
Dissimilatory reduction of NO2 to N2O and NH4+ by a soil Citrobacter sp. was studied in an attempt to elucidate the physiological and ecological significance of N2O production by this mechanism. In batch cultures with defined media, NO2 reduction to NH4+ was favored by high glucose and low NO3 concentrations. Nitrous oxide production was greatest at high glucose and intermediate NO3 concentrations. With succinate as the energy source, little or no NO2 was reduced to NH4+ but N2O was produced. Resting cell suspensions reduced NO2 simultaneously to N2O and free extracellular NH4+. Chloramphenicol prevented the induction of N2O-producing activity. The Km for NO2 reduction to N2O was estimated to be 0.9 mM NO2, yet the apparent Km for overall NO2 reduction was considerably lower, no greater than 0.04 mM NO2. Activities for N2O and NH4+ production increased markedly after depletion of NO3 from the media. Amendment with NO3 inhibited N2O and NH4+ production by molybdate-grown cells but not by tungstate-grown cells. Sulfite inhibited production of NH4+ but not of N2O. In a related experiment, three Escherichia coli mutants lacking NADH-dependent nitrite reductase produced N2O at rates equal to the wild type. These observations suggest that N2O is produced enzymatically but not by the same enzyme system responsible for dissimilatory reduction of NO2 to NH4+.  相似文献   

13.
Mass spectrometric analysis shows that assimilation of inorganic nitrogen (NH4+, NO2, NO3) by N-limited cells of Selenastrum minutum (Naeg.) Collins results in a stimulation of tricarboxylic acid cycle (TCA cycle) CO2 release in both the light and dark. In a previous study we have shown that TCA cycle reductant generated during NH4+ assimilation is oxidized via the cytochrome electron transport chain, resulting in an increase in respiratory O2 consumption during photosynthesis (HG Weger, DG Birch, IR Elrifi, DH Turpin [1988] Plant Physiol 86: 688-692). NO3 and NO2 assimilation resulted in a larger stimulation of TCA cycle CO2 release than did NH4+, but a much smaller stimulation of mitochondrial O2 consumption. NH4+ assimilation was the same in the light and dark and insensitive to DCMU, but was 82% inhibited by anaerobiosis in both the light and dark. NO3 and NO2 assimilation rates were maximal in the light, but assimilation could proceed at substantial rates in the light in the presence of DCMU and in the dark. Unlike NH4+, NO3 and NO2 assimilation were relatively insensitive to anaerobiosis. These results indicated that operation of the mitochondrial electron transport chain was not required to maintain TCA cycle activity during NO3 and NO2 assimilation, suggesting an alternative sink for TCA cycle generated reductant. Evaluation of changes in gross O2 consumption during NO3 and NO2 assimilation suggest that TCA cycle reductant was exported to the chloroplast during photosynthesis and used to support NO3 and NO2 reduction.  相似文献   

14.
A combination of stable isotopes (15N) and molecular ecological approaches was used to investigate the vertical distribution and mechanisms of biological N2 production along a transect from the Omani coast to the central–northeastern (NE) Arabian Sea. The Arabian Sea harbors the thickest oxygen minimum zone (OMZ) in the world''s oceans, and is considered to be a major site of oceanic nitrogen (N) loss. Short (<48 h) anoxic incubations with 15N-labeled substrates and functional gene expression analyses showed that the anammox process was highly active, whereas denitrification was hardly detectable in the OMZ over the Omani shelf at least at the time of our sampling. Anammox was coupled with dissimilatory nitrite reduction to ammonium (DNRA), resulting in the production of double-15N-labeled N2 from 15NO2, a signal often taken as the lone evidence for denitrification in the past. Although the central–NE Arabian Sea has conventionally been regarded as the primary N-loss region, low potential N-loss rates at sporadic depths were detected at best. N-loss activities in this region likely experience high spatiotemporal variabilities as linked to the availability of organic matter. Our finding of greater N-loss associated with the more productive Omani upwelling region is consistent with results from other major OMZs. The close reliance of anammox on DNRA also highlights the need to take into account the effects of coupling N-transformations on oceanic N-loss and subsequent N-balance estimates.  相似文献   

15.
Aerobic and anaerobic groundwater continuous-flow microcosms were designed to study nitrate reduction by the indigenous bacteria in intact saturated soil cores from a sandy aquifer with a concentration of 3.8 mg of NO3-N liter−1. Traces of 15NO3 were added to filter-sterilized groundwater by using a Darcy flux of 4 cm day−1. Both assimilatory and dissimilatory reduction rates were estimated from analyses of 15N2, 15N2O, 15NH4+, and 15N-labeled protein amino acids by capillary gas chromatography-mass spectrometry. N2 and N2O were separated on a megabore fused-silica column and quantified by electron impact-selected ion monitoring. NO3 and NH4+ were analyzed as pentafluorobenzoyl amides by multiple-ion monitoring and protein amino acids as their N-heptafluorobutyryl isobutyl ester derivatives by negative ion-chemical ionization. The numbers of bacteria and their [methyl-3H]thymidine incorporation rates were simultaneously measured. Nitrate was completely reduced in the microcosms at a rate of about 250 ng g−1 day−1. Of this nitrate, 80 to 90% was converted by aerobic denitrification to N2, whereas only 35% was denitrified in the anaerobic microcosm, where more than 50% of NO3 was reduced to NH4+. Assimilatory reduction was recorded only in the aerobic microcosm, where N appeared in alanine in the cells. The nitrate reduction rates estimated for the aquifer material were low in comparison with rates in eutrophic lakes and coastal sediments but sufficiently high to remove nitrate from an uncontaminated aquifer of the kind examined in less than 1 month.  相似文献   

16.
The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2-N or NO3-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2 as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen.  相似文献   

17.
Chlamydomonas reinhardii cells, growing photoautotrophically under air, excreted to the culture medium much higher amounts of NO2 and NH4+ under blue than under red light. Under similar conditions, but with NO2 as the only nitrogen source, the cells consumed NO2 and excreted NH4+ at similar rates under blue and red light. In the presence of NO3 and air with 2% CO2 (v/v), no excretion of NO2 and NH4+ occurred and, moreover, if the bubbling air of the cells that were currently excreting NO2 and NH4+ was enriched with 2% CO2 (v/v), the previously excreted reduced nitrogen ions were rapidly reassimilated. The levels of total nitrate reductase and active nitrate reductase increased several times in the blue-light-irradiated cells growing on NO3 under air. When tungstate replaced molybdate in the medium (conditions that do not allow the formation of functional nitrate reductase), blue light activated most of the preformed inactive enzyme of the cells. Furthermore, nitrate reductase extracted from the cells in its inactive form was readily activated in vitro by blue light. It appears that under high irradiance (90 w m−2) and low CO2 tensions, cells growing on NO3 or NO2 may not have sufficient carbon skeletons to incorporate all the photogenerated NH4+. Because these cells should have high levels of reducing power, they might use NO3 or, in its absence, NO2 as terminal electron acceptors. The excretion of the products of NO2 and NH4+ to the medium may provide a mechanism to control reductant level in the cells. Blue light is suggested as an important regulatory factor of this photorespiratory consumption of NO3 and possibly of the whole nitrogen metabolism in green algae.  相似文献   

18.
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3 ). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences by N2-fixing cyanobacteria. We examined the unicellular diazotroph Crocosphaera watsonii (strain WH0003) to determine how the light-limited growth rate influences the inhibitory effects of fixed N on N2 fixation. When growth (µ) was limited by low light (µ = 0.23 d−1), short-term experiments indicated that 0.4 µM NH4 + reduced N2-fixation by ∼90% relative to controls without added NH4 +. In fast-growing, high-light-acclimated cultures (µ = 0.68 d−1), 2.0 µM NH4 + was needed to achieve the same effect. In long-term exposures to NO3 , inhibition of N2 fixation also varied with growth rate. In high-light-acclimated, fast-growing cultures, NO3 did not inhibit N2-fixation rates in comparison with cultures growing on N2 alone. Instead NO3 supported even faster growth, indicating that the cellular assimilation rate of N2 alone (i.e. dinitrogen reduction) could not support the light-specific maximum growth rate of Crocosphaera. When growth was severely light-limited, NO3 did not support faster growth rates but instead inhibited N2-fixation rates by 55% relative to controls. These data rest on the basic tenet that light energy is the driver of photoautotrophic growth while various nutrient substrates serve as supports. Our findings provide a novel conceptual framework to examine interactions between N source preferences and predict degrees of inhibition of N2 fixation by fixed N sources based on the growth rate as controlled by light.  相似文献   

19.
Phosphate-limited chemostat cultures were used to study cell growth and N assimilation in Anabaena flos-aquae under various N sources to determine the relative energetic costs associated with the assimilation of NH3, NO3, or N2. Expressed as a function of relative growth rate, steady state cellular P contents and PO4 assimilation rates did not vary with N-source. However, N-source did alter the maximal PO4-limited growth rate achieved by the cultures: the NO3 and N2 cultures attained only 97 and 80%, respectively, of the maximal growth rate of the NH3 grown cells. Cellular biomass and C contents did not vary with growth rate, but changed with N source. The NO3-grown cells were the smallest (627 ± 34 micromoles C · 10−9 cells), while NH3-grown cells were largest (900 ± 44 micromoles C · 10−9 cells) and N2-fixing cells were intermediate (726 ± 48 micromoles C · 10−9 cells) in size. In the NO3-and N2-grown cultures, N content per cell was only 57 and 63%, respectively, of that in the NH3-grown cells. Heterocysts were absent in NH3-grown cultures but were present in both the N2 and NO3 cultures. In the NO3-grown cultures C2H2 reduction was detected only at high growth rates, where it was estimated to account for a maximum of 6% of the N assimilated. In the N2-fixing cultures the acetylene:N2 ratio varied from 3.4:1 at lower growth rates to 3.0:1 at growth rates approaching maximal.

Compared with NH3, the assimilation of NO3 and N2 resulted either in a decrease in cellular C (NO3 and N2 cultures) or in a lower maximal growth rate (N2 culture only). The observed changes in cell C content were used to calculate the net cost (in electron pair equivalents) associated with growth on NO3 or N2 compared with NH3.

  相似文献   

20.
Macroalgae has bloomed in the brackish lake of Shenzhen Bay, China continuously from 2010 to 2014. Gracilaria tenuistipitata was identified as the causative macroalgal species. The aim of this study was to explore the outbreak mechanism of G. tenuistipitata, by studying the effects of salinity and nitrogen sources on growth, and the different nitrogen sources uptake characteristic. Our experimental design was based on environmental conditions observed in the bloom areas, and these main factors were simulated in the laboratory. Results showed that salinity 12 to 20 ‰ was suitable for G. tenuistipitata growth. When the nitrogen sources'' (NH4 +, NO3 ) concentrations reached 40 µM or above, the growth rate of G. tenuistipitata was significantly higher. Algal biomass was higher (approximately 1.4 times) when cultured with NH4 + than that with NO3 addition. Coincidentally, macroalgal bloom formed during times of moderate salinity (∼12 ‰) and high nitrogen conditions. The NH4 + and NO3 uptake characteristic was studied to understand the potential mechanism of G. tenuistipitata bloom. NH4 + uptake was best described by a linear, rate-unsaturated response, with the slope decreasing with time intervals. In contrast, NO3 uptake followed a rate-saturating mechanism best described by the Michaelis-Menten model, with kinetic parameters Vmax = 37.2 µM g−1 DM h−1 and Ks = 61.5 µM. Further, based on the isotope 15N tracer method, we found that 15N from NH4 + accumulated faster and reached an atom% twice than that of 15N from NO3 , suggesting when both NH4 + and NO3 were available, NH4 + was assimilated more rapidly. The results of the present study indicate that in the estuarine environment, the combination of moderate salinity with high ammonium may stimulate bloom formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号