首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Severely immunodeficient NOD/Shi-scid IL2Rgnull (NOG) mice are used as recipients for human tissue transplantation, which produces chimeric mice with various types of human tissue. NOG mice expressing transgenic urokinase-type plasminogen activator in the liver (uPA-NOG) were produced. Human hepatocytes injected into uPA-NOG mice repopulated the recipient livers with human cells. The uPA-NOG model has several advantages over previously produced chimeric mouse models of human liver: (1) the severely immunodeficient NOG background enables higher xenogeneic cell engraftment; (2) the absence of neonatal lethality enables mating of homozygotes, which increased the efficacy of homozygote production; and (3) donor xenogeneic human hepatocytes could be readily transplanted into young uPA-NOG mice, which provide easier surgical manipulation and improved recipient survival.  相似文献   

3.
Liver sinusoidal endothelial cells (LSECs) undergo capillarization, or loss of fenestrae, and produce basement membrane during liver fibrotic progression. DLL4, a ligand of the Notch signaling pathway, is predominantly expressed in endothelial cells and maintains liver sinusoidal homeostasis. The aim of this study was to explore the role of DLL4 in LSEC capillarization. The expression levels of DLL4 and the related genes, capillarization markers and basement membrane proteins were assessed by immunohistochemistry, immunofluorescence, RT-PCR and immunoblotting as appropriate. Fenestrae and basement membrane formation were examined by electron microscopy. We found DLL4 was up-regulated in the LSECs of human and CCl4-induced murine fibrotic liver, consistent with LSEC capillarization and liver fibrosis. Primary murine LSECs also underwent capillarization in vitro, with concomitant DLL4 overexpression. Bioinformatics analysis confirmed that DLL4 induced the production of basement membrane proteins in LSECs, which were also increased in the LSECs from 4 and 6-week CCl4-treated mice. DLL4 overexpression also increased the coverage of liver sinusoids by hepatic stellate cells (HSCs) through endothelin-1 (ET-1) synthesis. The hypoxic conditions that was instrumental in driving DLL4 overexpression in the LSECs. Consistent with the above findings, DLL4 silencing in vivo alleviated LSEC capillarization and CCl4-induced liver fibrosis. In conclusion, DLL4 mediates LSEC capillarization and the vicious circle between fibrosis and pathological sinusoidal remodeling.  相似文献   

4.
Although liver sinusoidal endothelial cells (LSECs) have long been known to contribute to liver regeneration following injury, the exact role of these cells in liver regeneration remains poorly understood. In this work, we performed lineage tracing of LSECs in mice carrying Tie2‐Cre or VE‐cadherin‐Cre constructs to facilitate fate‐mapping of LSECs in liver regeneration. Some YFP‐positive LSECs were observed to convert into hepatocytes following a two‐thirds partial hepatectomy (PH). Furthermore, human umbilical vein endothelial cells (HUVECs) could be triggered to convert into cells that closely resembled hepatocytes when cultured with serum from mice that underwent an extended PH. These findings suggest that mature non‐hepatocyte LSECs play an essential role in mammalian liver regeneration by converting to hepatocytes. The conversion of LSECs to hepatocyte‐like (iHep) cells may provide a new approach to tissue engineering.  相似文献   

5.
6.
A portal venous injection of allogeneic donor cells is known to prolong the survival of subsequently transplanted allografts. In this study, we investigated the role of liver sinusoidal endothelial cells (LSECs) in immunosuppressive effects induced by a portal injection of allogeneic cells on T cells with indirect allospecificity. To eliminate the direct CD4+ T cell response, C57BL/6 (B6) MHC class II-deficient C2tatm1Ccum (C2D) mice were used as donors. After portal injection of irradiated B6 C2D splenocytes into BALB/c mice, the host LSECs that endocytosed the irradiated allogeneic splenocytes showed enhanced expression of MHC class II molecules, CD80, and Fas ligand (FasL). Due to transmigration across the LSECs from BALB/c mice treated with a portal injection of B6 C2D splenocytes, the naive BALB/c CD4+ T cells lost their responsiveness to stimulus of BALB/c splenic APCs that endocytose donor-type B6 C2D alloantigens, while maintaining a normal response to stimulus of BALB/c splenic APCs that endocytose third-party C3H alloantigens. Similar results were not observed for naive BALB/c CD4+ T cells that transmigrated across the LSECs from BALB/c FasL-deficient mice treated with a portal injection of B6 C2D splenocytes. Adaptive transfer of BALB/c LSECs that had endocytosed B6 C2D splenocytes into BALB/c mice via the portal vein prolonged the survival of subsequently transplanted B6 C2D hearts; however, a similar effect was not observed for BALB/c FasL-deficient LSECs. These findings indicate that LSECs that had endocytosed allogeneic splenocytes have immunosuppressive effects on T cells with indirect allospecificity, at least partially via the Fas/FasL pathway.  相似文献   

7.
肝窦内皮细胞(liver sinusoidal endothelial cell,LSEC)是肝非实质细胞的主要细胞群,具有物质转运、吞噬、抗原提呈、免疫耐受等功能. 肝在遭到多种病原侵袭时,肝窦内皮细胞窗孔逐渐减少或消失,内皮下基膜形成,产生类似于连续型毛细血管的结构,这一过程称为肝窦毛细血管化. 它由多种因素引起,其过程极复杂,在多种肝病的发病前期阶段均有出现,近年来受到广泛关注. 而目前关于肝窦内皮细胞的生理功能及病理机制研究方面的系统总结仍少有报道. 本文对肝窦内皮细胞的生理功能及肝窦病理机制作一较为全面的综述. 除了阐述肝窦毛细血管化自身分子机制的研究进展外,还重点介绍了肝窦毛细血管化参与肝多种疾病发病过程的作用机制. 此外,对肝窦内皮细胞相关的研究方法也作了详细的介绍,为全面了解肝窦内皮细胞生理功能及肝窦毛细血管化的分子机理提供参考.  相似文献   

8.
BACKGROUND: During the engraftment process of transplanted HPC, the beta 1 integrins play an important role. An increased expression and adhesive function of these integrins has been shown in hematopoietic cell lines and peripheral blood-derived HPC after stimulation with SCF. In this study, we investigated the influence of SCF on the engraftment capability and tissue distribution of cord blood (CB) cells transplanted into NOD/SCID mice. METHODS: CB-derived mononuclear cells were injected i.v. into 40 sublethally irradiated NOD/SCID mice with or without the addition of 10 microg SCF/ mouse. Six weeks later, BM, liver, kidneys, brain and testicular tissue were analyzed for the prevalence of human cells. RESULTS: The mean proportion of human CD45+ CD71+ cells within the BM of all engrafted mice receiving SCF in addition to the cells was 1.7-fold higher than in the respective controls. By immunohistochemical staining, human cells were found in liver and kidneys of the engrafted animals, but not in neural tissues or testicles. In the kidneys, the proportion of human cells rose significantly from 0.07 +/- 0.3% to 0.24 +/- 0.05% with treatment with SCF, compared with untreated controls. Single human cells in the liver additionally stained positive for human albumin, indicating organ-specific differentiation of the transplanted cells. DISCUSSION: Our results indicate that stimulation with SCF modulates the tissue distribution of the progeny of the transplanted cells and improves the hematopoietic engraftment potential of transplanted CB cells.  相似文献   

9.
Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.  相似文献   

10.
11.
Although livers transplanted across MHC barriers in mice are normally accepted without recipient immune suppression, the underlying mechanisms remain to be clarified. To identify the cell type that contributes to induction of such a tolerance state, we established a mixed hepatic constituent cell-lymphocyte reaction (MHLR) assay. Irradiated C57BL/6 (B6) or BALB/c mouse hepatic constituent cells (HCs) and CFSE-labeled B6 splenocytes were cocultured. In allogeneic MHLR, whole HCs did not promote T cell proliferation. When liver sinusoidal endothelial cells (LSECs) were depleted from HC stimulators, allogeneic MHLR resulted in marked proliferation of reactive CD4(+) and CD8(+) T cells. To test the tolerizing capacity of the LSECs toward alloreactive T cells, B6 splenocytes that had transmigrated through monolayers of B6, BALB/c, or SJL/j LSECs were restimulated with irradiated BALB/c splenocytes. Nonresponsiveness of T cells that had transmigrated through allogeneic BALB/c LSECs and marked proliferation of T cells transmigrated through syngeneic B6 or third-party SJL/j LSECs were observed after the restimulation. Transmigration across the Fas ligand-deficient BALB/c LSECs failed to render CD4(+) T cells tolerant. Thus, we demonstrate that Fas ligand expressed on naive LSECs can impart tolerogenic potential upon alloantigen recognition via the direct pathway. This presents a novel relevant mechanism of liver allograft tolerance. In conclusion, LSECs are capable of regulating a polyclonal population of T cells with direct allospecificity, and the Fas/Fas ligand pathway is involved in such LSEC-mediated T cell regulation.  相似文献   

12.
Liver sinusoidal endothelial cells (LSECs), a type of endothelial cells with unique morphology and function, play an important role in the liver hemostasis, and LSECs dysfunction is involved in the development of nonalcoholic fatty liver disease (NAFLD). Here, we employed Raman imaging and chemometric data analysis in order to characterize the presence of lipid droplets (LDs) and their lipid content in primary murine LSECs, in comparison with hepatocytes, isolated from mice on high‐fat diet. On NAFLD development, LDs content in LSECs changed toward more unsaturated lipids, and this response was associated with an increased expression of stearylo‐CoA desaturase‐1. To the best of our knowledge, this is a first report characterizing LDs in LSECs, where their chemical composition is analyzed along the progression of NAFLD at the level of single LD using Raman imaging.   相似文献   

13.
Recombinant factor VIII is one of the most complex mammalian proteins and a biotechnology venture required for the treatment of hemophilia A. The complexity of the protein, post-translational modifications and limitations of expression elements make the production of active recombinant FVIII a challenge. Here we report the production of biologically active Factor VIII in two different cell lines, CHO and HepG2, by transient transfection. Two expression vectors based on the CMV promoter were used: one harboring CMV Intron A (InA) and the other without it. To bypass difficulties in secretion, we also studied the influence of co-expression of the human splice isoform of the XBP1 gene. We report the production of recombinant FVIII possessing bioengineered FVIII heavy and light chains, linked by a minimal B domain. In our study, HepG2, a human hepatocyte cell line, expressed Factor VIII ten-fold more than a CHO cell line, and in HepG2 cells, the expression of XBP1 improved Factor VIII activity. For CHO cells, expression was improved by the presence of InA, but no further improvement was noted with XBP1 co-expression. These data suggest that the minimal B domain rFVIII preserves Factor VIII biological activity and that different expression elements can be used to improve its production.  相似文献   

14.
The essential role of Factor VIII:C (FVIII:C, anti-hemophilia factor A) as a cofactor for Factor IXa-dependent activation of Factor X has been established. In this paper, we describe that capillary endothelial cells from bovine adrenal medulla express active FVIII:C gene. Accumulation of FVIII:C in conditioned media from an 8-day-old culture is approximately twice as high as that stored in the cell when immunoprecipitated FVIII:C was analyzed for its ability to convert Factor X to Factor Xa. Analysis of [35S]methionine-labeled and immunoprecipitated FVIII:C from cells or conditioned media on SDS-PAGE under fully denatured conditions indicated that the newly synthesized FVIII:C consists of heavy chain of M(r) 200,000 and light chain of M(r) 46,000. The secreted FVIII:C in the non-reduced condition however, has a molecular weight of 270,000 which suggests that in native protein, the heavy and light chains are held together by S-S bonds. Furthermore, susceptibility of the immunoprecipitated FVIII:C to N-glycanase digestion establishes that the endothelial cells derived FVIII:C contains asparagine-linked carbohydrate side chains.  相似文献   

15.
Atherogenesis is associated with elevated levels of low-density lipoprotein (LDL) and its oxidized form (oxLDL) in the blood. The liver is an important scavenger organ for circulating oxLDLs. The present study aimed to examine endocytosis of mildly oxLDL (the major circulating form of oxLDLs) in liver sinusoidal endothelial cells (LSECs) and the involvement of the scavenger receptors stabilin-1 and stabilin-2 in this process. Freshly isolated LSECs, Kupffer cells (KCs), and stabilin-1- and stabilin-2-transfected human embryonic kidney cells were incubated with fluorescently labeled or radiolabeled oxLDLs [oxidized for 3 h (oxLDL(3)), 6 h, or 24 h (oxLDL(24))] to measure endocytosis. The intracellular localization of oxLDLs and stabilins in LSECs was examined by immunofluorescence and immunogold electron microscopy. Whereas oxLDL(24) was endocytosed both by LSECs and KCs, oxLDL(3) (mildly oxLDL) was taken up by LSECs only. The LSEC uptake of oxLDLs was significantly inhibited by the scavenger receptor ligand formaldehyde-treated serum albumin. Uptake of all modified LDLs was high in stabilin-1-transfected cells, whereas stabilin-2-transfected cells preferentially took up oxLDL(24), suggesting that stabilin-1 is a more important receptor for mildly oxLDLs than stabilin-2. Double immunogold labeling experiments in LSECs indicated interactions of stabilin-1 and stabilin-2 with oxLDL(3) on the cell surface, in coated pits, and endocytic vesicles. LSECs but not KCs endocytosed mildly oxLDL. Both stabilin-1 and stabilin-2 were involved in the LSEC endocytosis of oxLDLs, but experiments with stabilin-transfected cells pointed to stabilin-1 as the most important receptor for mildly oxLDL.  相似文献   

16.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

17.
Humanized mice were generated in order to investigate the anti-tumor efficacy of bispecific antibodies. The engraftment, distribution and differentiation of mononuclear cells (MNC) from cord blood transplanted into the liver of newborn non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice were measured. Using a human-specific polymerase chain reaction (PCR), human cells were found to be present in the liver for a time range from 5 min to 5 days. After long-term engraftment of 42 days, the highest level of human cells was measured in mouse thymus, with lower levels in spleen and bone marrow. Engrafted human cells in mouse organs showed T-cell differentiation only, as measured by CD3, CD4 and CD8 expression. The MNC transplanted intrahepatically into newborn mice were tested for T-cell mediated anti-tumor activity in vivo against subcutaneously transplanted human SW480 colon carcinoma in NOD/SCID mice. A delay of SW480 tumor growth in mice in the presence of a bispecific epithelial cell-adhesion molecule (EpCAM)/CD3 antibody was found to be associated with the presence of immunoreactive human CD3 cells within the SW480 tumor. Our data provide evidence that the intrahepatic transplantation of cord blood stem cells into newborn mice represents a valuable model for establishing functionally active human T cells with anti-tumor activity.  相似文献   

18.
Liver sinusoidal endothelial cells are insufficient to activate T cells   总被引:7,自引:0,他引:7  
Liver sinusoidal endothelial cells (LSEC) have been reported to express MHC class II, CD80, CD86, and CD11c and effectively stimulate naive T cells. Because dendritic cells (DC) are known to possess these characteristics, we sought to directly compare the phenotype and function of murine LSEC and DC. Nonparenchymal cells from C57BL/6 mice were obtained by collagenase digestion of the liver followed by density gradient centrifugation. From the enriched nonparenchymal cell fraction, LSEC (CD45(-)) were then isolated to 99% purity using immunomagnetic beads. Flow cytometric analysis of LSEC demonstrated high expression of CD31, von Willebrand factor, and FcgammaRs. However, unlike DC, LSEC had low or absent expression of MHC class II, CD86, and CD11c. LSEC demonstrated a high capacity for Ag uptake in vitro and in vivo. Although acetylated low-density lipoprotein uptake has been purported to be a specific function of LSEC, we found DC captured acetylated low-density lipoprotein to a similar extent in vivo. Consistent with their phenotype, LSEC were poor stimulators of allogeneic T cells. Furthermore, in the absence of exogenous costimulation, LSEC induced negligible proliferation of CD4(+) or CD8(+) TCR-transgenic T cells. Thus, contrary to previous reports, our data indicate that LSEC alone are insufficient to activate naive T cells.  相似文献   

19.
Together with Kupffer cells, liver sinusoidal endothelial cells (LSECs) constitute the most powerful scavenger system in the body. However, studies on LSEC function are hampered by the fact that the cells lose their scavenger ability and start deteriorating after a few days in culture. The purpose of the present study was to improve the conditions of cultivation to prolong the survival of pig LSECs in vitro. We used the high capacity receptor-mediated endocytosis of soluble waste molecules as a marker for functionally intact cells in the cultures. Compared with two commercially-, and two other media specifically designed for use with either SECs or hepatocytes from rat, our newly developed serum-free medium, DM 110/SS, devoid of any components of animal origin, was superior in maintaining the endocytic activity. Of six growth factors studied for their effect on endocytosis, basic fibroblast, and recombinant epidermal, but not vascular endothelial growth factor, were found to be most beneficial. After 8 days in DM 110/SS, LSECs maintained endocytosis via the scavenger receptor, mannose receptor, collagen alpha-chain receptor and the Fc-gamma receptor. All endocytosed ligands, except for aggregated IgG were degraded in 8-day-old cultures. Using the new medium, the cells endocytosed ligands for up to 20 days, and survived for at least an additional 10 days, albeit without the high endocytic activity typical of intact LSECs. Importantly, DNA synthesis in prolonged cultures of LSECs was observed only when maintained in DM 110/SS medium. In conclusion, we describe a protocol for the maintenance of LSECs in culture for the longest period yet reported.  相似文献   

20.
In this work, we isolated and produced long-term cultures of human fetal endothelial cells (fECs) deriving from different organs of the same 12-week-old embryos. Highly pure endothelium cultures were obtained from specimens of brain, heart, lung, liver, aorta and kidney by using magnetic microspheres coated with CD31 or CD34 specific endothelial antibodies. The endothelial nature of these cells was confirmed by the presence of von Willebrand Factor (vWf), Flk-1/VEGFR2 and CD31. The fECs cultures showed organ-specific differences as regards to the morphological appearance, the growth rate and the expression of cellular adhesion molecules (CAMs) before or after stimulation by the inflammatory cytokines IL-1beta and TNF-alpha. For instance, TNF-alpha showed a specific effect on fetal heart ECs by stimulating E-selectin expression. Our findings indicate that fECs may represent an innovative tool to study differences among ECs of different vascular districts of the same individual, thus increasing the possibility to compare many pathological aspects of human adult and fetal microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号