首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mimicry and arthritogenic peptides form the basis of hypotheses that attempt to explain the pathogenesis of HLA-B27-positive ankylosing spondylitis (AS). We propose, therefore, that certain human viruses may possess peptide sequences that mimic HLA-B27-binding human ‘self’ peptides which might induce or play a significant role in AS. In the present study, we performed bioinformatic analysis, using BLASTP, of the human virus proteome and HLA-B27-binding human ‘self’ peptides including peptides derived from arthritogenic sequences. We identified that some HLA-B27-binding peptides, particularly those present in proteins of the cartilage and bone, are highly similar to those present in viruses known to cause chronic infection. We suggest that the identical short amino acid sequences shared between human viruses and HLA-B27 peptides may play a role in the pathogenesis of AS.  相似文献   

2.
The class I protein HLA-B27 confers susceptibility to inflammatory arthritis in humans and when overexpressed in rodents for reasons that remain unclear. We demonstrated previously that HLA-B27 heavy chains (HC) undergo endoplasmic reticulum (ER)-associated degradation. We report here that HLA-B27 HC also forms two types of aberrant disulfide-linked complexes (dimers) during the folding and assembly process that can be distinguished by conformation-sensitive antibodies W6/32 and HC10. HC10-reactive dimers form immediately after HC synthesis in the ER and constitute at least 25% of the HC pool, whereas W6/32-reactive dimers appear several hours later and represent less than 10% of the folded HC. HC10-reactive dimers accumulate in the absence of tapasin or beta(2)-microglobulin, whereas W6/32-reactive dimers are not detected. Efficient formation of W6/32-reactive dimers appears to depend on the transporter associated with antigen processing, tapasin, and beta(2)-microglobulin. The unpaired Cys(67) and residues at the base of the B pocket that dramatically impair HLA-B27 HC folding are critical for the formation of HC10-reactive ER dimers. Although certain other alleles also form dimers late in the assembly pathway, ER dimerization of HLA-B27 may be unique. These results demonstrate that residues comprising the HLA-B27 B pocket result in aberrant HC folding and disulfide bond formation, and thus confer unusual properties on this molecule that are unrelated to peptide selection per se, yet may be important in disease pathogenesis.  相似文献   

3.
HLA-B27 is strongly associated with ankylosing spondylitis (AS). We analyzed the relationship between structure, peptide specificity, folding, and stability of the seven major HLA-B27 subtypes to determine the role of their constitutive peptidomes in the pathogenicity of this molecule. Identification of large numbers of ligands allowed us to define the differences among subtype-bound peptidomes and to elucidate the peptide features associated with AS and molecular stability. The peptides identified only in AS-associated or high thermostability subtypes with identical A and B pockets were longer and had bulkier and more diverse C-terminal residues than those found only among non-AS-associated/lower-thermostability subtypes. Peptides sequenced from all AS-associated subtypes and not from non-AS-associated ones, thus strictly correlating with disease, were very rare. Residue 116 was critical in determining peptide binding, thermodynamic properties, and folding, thus emerging as a key feature that unified HLA-B27 biology. HLA-B27 ligands were better suited to TAP transport than their N-terminal precursors, and AS-associated subtype ligands were better than those from non-AS-associated subtypes, suggesting a particular capacity of AS-associated subtypes to bind epitopes directly produced in the cytosol. Peptides identified only from AS-associated/high-thermostability subtypes showed a higher frequency of ERAP1-resistant N-terminal residues than ligands found only in non-AS-associated/low-thermostability subtypes, reflecting a more pronounced effect of ERAP1 on the former group. Our results reveal the basis for the relationship between peptide specificity and other features of HLA-B27, provide a unified view of HLA-B27 biology and pathogenicity, and suggest a larger influence of ERAP1 polymorphism on AS-associated than non-AS-associated subtypes.The current ideas concerning the pathogenetic role of HLA-B27 in ankylosing spondylitis (AS) emphasize specific antigen presentation (1), misfolding (2), or immunomodulation mediated by heavy chain homodimers (3) expressed at the cell surface upon endosomal recycling (4). Recent research provided evidence that both misfolded HLA-B27 heavy chains and surface expressed B27 homodimers may activate the IL-23/IL-17 axis, a key inflammatory pathway in spondyloarthropathies, through distinct mechanisms, namely the unfolded protein response (5) and the stimulation of IL-17-producing T cells (6). In contrast, the fact that CD8+ T cells are not required for the HLA-B27-associated disease in transgenic rats (7, 8), and the failure to identify specific arthritogenic peptides, point out to a pathogenetic role of HLA-B27 based on its folding and/or non-canonical forms, rather than to an autoimmune mechanism based on molecular mimicry between foreign and self-derived peptides. Yet, on the basis of genetic and immunological studies (9, 10), an involvement of CD8+T cells in the human disease cannot be ruled out.Beyond the pathogenetic relevance of specific peptides, the constitutive HLA-B27-bound peptidome is related to the folding and stability of HLA-B27, because both features are peptide-dependent (11). This is strongly supported by the association of ERAP1, an aminopeptidase that trims peptides to their optimal size for MHC-I binding (12, 13), with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals (14), and by the demonstration that AS-associated ERAP1 polymorphism has a substantial effect on the HLA-B27 peptidome in live cells (15).Any pathogenetic mechanism must account for the differential association of HLA-B27 subtypes with AS. Whereas B*27:02, B*27:04 and B*27:05 are clearly associated with this disease, B*27:06 and B*27:09 are not (16, 17). B*27:07, a subtype present in multiple populations, is generally associated with AS, with one reported exception (18, 19). All these subtypes have the same structure in the A and B pockets of their peptide binding site, which accommodate the two N-terminal residues of their peptide ligands, but they differ in one or more positions in the F pocket, which binds the C-terminal peptide residue, as well as in other positions of the peptide binding site. In contrast, B*27:03, a subtype prevalent only in populations of Sub-Saharan African ancestry, differs from the B*27:05 prototype by a single Y59H change in the A pocket (20, 21), a difference that also sets it apart from all other subtypes (supplemental Table S1) and affects the binding preferences for N-terminal peptide residues (2224). The nature of B*27:03 as a putative susceptibility factor for AS is unclear (19). In African populations in which this subtype is prevalent, neither this subtype nor B*27:05 are associated with this disease (25), presumably because of concurrent protective factor(s).In this study we carried out an extensive sequence analysis of HLA-B27 subtype-bound peptidomes to define their differential features as well as the extent and nature of peptide sharing among subtypes. The results revealed the basis for the intimate relationship between peptide specificity, folding, and stability of HLA-B27, provided a unified explanation on how subtype polymorphism alters the molecular biology of HLA-B27 and its association with AS, and demonstrated a differential influence of TAP and ERAP1 on AS-associated and non-AS-associated subtypes.  相似文献   

4.
The association of ERAP1 with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals suggests that ERAP1 polymorphism may affect pathogenesis by altering peptide-dependent features of the HLA-B27 molecule. Comparisons of HLA-B*27:04-bound peptidomes from cells expressing different natural variants of ERAP1 revealed significant differences in the size, length, and amount of many ligands, as well as in HLA-B27 stability. Peptide analyses suggested that the mechanism of ERAP1/HLA-B27 interaction is a variant-dependent alteration in the balance between epitope generation and destruction determined by the susceptibility of N-terminal flanking and P1 residues to trimming. ERAP1 polymorphism associated with AS susceptibility ensured efficient peptide trimming and high HLA-B27 stability. Protective polymorphism resulted in diminished ERAP1 activity, less efficient trimming, suboptimal HLA-B27 peptidomes, and decreased molecular stability. This study demonstrates that natural ERAP1 polymorphism affects HLA-B27 antigen presentation and stability in vivo and proposes a mechanism for the interaction between these molecules in AS.The mechanism underlying the strong association of HLA-B27 with ankylosing spondylitis (AS) remains unknown. Three main possibilities, each one based on a different molecular feature of HLA-B27, are currently being investigated. The arthritogenic peptide hypothesis (1), based on the canonic antigen-presenting properties of Major Histocompatibility Complex class I (MHC-I) molecules, assumes that a peptide epitope of external origin would activate HLA-B27-restricted T-cells, whose cross-reactivity with a self-derived HLA-B27 ligand would result in autoimmune damage. The misfolding hypothesis (2) is based on the slow folding and tendency to misfold of HLA-B27 (3, 4). An accumulation of misfolded heavy chains (HCs) in the endoplasmic reticulum (ER) would elicit an unfolded protein response and activate pro-inflammatory pathways. The surface homodimer hypothesis (5, 6) is based on the expression of HLA-B27 HC homodimers at the cell surface and their recognition by leukocyte receptors (7), which leads to immunomodulation of inflammatory responses. Because the constitutive binding of endogenous peptides by MHC-I molecules determines not only their antigen-presenting specificity, but also their folding and stability, it was proposed that the HLA-B27 peptidome, through its global influence on the biological behavior of the molecule, is critical to its pathogenetic role (8). This idea found strong support with the discovery of the association of ER aminopeptidase (ERAP) 1 with AS (9) in HLA-B27-positive, but not B27-negative, disease (10). With an estimated population attributable risk of 26%, ERAP1 is the non-MHC gene most strongly associated with AS. Given that ERAP1 is involved in the N-terminal trimming of peptides to their optimal size for MHC-I binding (1113), its association with AS suggests a pathogenetic mechanism of functional interaction with HLA-B27 that influences peptide binding and antigen presentation. ERAP1 trimming is limited by peptide size, becoming highly inefficient for 8-mers and shorter peptides (13, 14). This is a seemingly unique feature of ERAP1 that is not even shared by its analog ERAP2 (14, 15). The only putative exception, which has not been entirely ruled out, might be insulin-regulated amino peptidase (IRAP), an endosomal analog of ERAP1 involved in cross-presentation, but probably not in processing of constitutive MHC-I ligands (16, 17). IRAP degrades peptides to smaller products than ERAP1 in vitro (18). The three-dimensional structure of ERAP1 reveals a substrate binding cavity close to the catalytic site, as well as four domains; the conformational rearrangement between an open and a closed conformation, presumably induced upon substrate binding, regulates its enzymatic activity (19, 20). The polymorphic residues found among natural ERAP1 variants (21), and often co-occurring in complex allotypes, are located in various topological regions, including some in close proximity to the catalytic site, the substrate binding cavity, or domain junctions. Therefore, they might alter ERAP1 activity by directly affecting catalysis, altering substrate binding, or modulating domain rearrangements. The association of ERAP1 with AS does not by itself reveal the specific feature(s) determining the pathogenetic role of HLA-B27. Indeed, ERAP1 might influence the generation of specific pathogenetic epitopes; have a general effect on the HLA-B27 peptidome, altering the stability or other features of the molecule; or both. This study investigated general effects of ERAP1 polymorphism on the HLA-B27 peptidome by comparing the size distribution, molecular features, and N-terminal flanking sequences of peptides from human cells expressing the AS-associated B*27:04 subtype and different natural variants of ERAP1.  相似文献   

5.
The specificity of peptide binding by human leukocyte antigen (HLA) class I molecules was investigated in a cell-free direct-binding assay. Peptides were assessed for binding to HLA-A2 and HLA-B27 by measuring the formation of heterotrimeric HLA complexes that consisted of iodinated beta 2-microglobulin, HLA heavy chain fragments isolated from the Escherichia coli cytoplasm, and peptide. In this system, no detectable HLA heavy chain-beta 2-microglobulin complexes were formed unless appropriate peptides were intentionally added to the reconstitution solution. Analysis with monoclonal antibodies demonstrated that these heterotrimeric complexes were correctly folded. Five nonhomologous peptides, known to form complexes with HLA-A2 or HLA-B27 from T-cell functional studies, were tested for their capacity to bind to HLA-A2 and HLA-B27 using the reconstitution assay. Four of the peptides bound to the appropriate class I molecule only. One peptide and some (but not all) substitution analogs of it bound to both HLA-A2 and HLA-B27. The effect of peptide length on binding to HLA-B27 was studied, and it was found that the optimal length was 9 or 10 amino acid residues; however, one peptide that bound to HLA-B27 was 15 amino acids long. All peptides that bound to HLA-B27 in the direct-binding assay also competed with antigenic peptides for binding to HLA-B27 on the surface of intact cells, as determined by a standard cytotoxic T-lymphocyte functional assay. Thus, we conclude that HLA-A2 and HLA-B27 bind distinct but partially overlapping sets of peptides and that, at least in vitro, the assembly of HLA heavy chain-beta 2-microglobulin complexes requires specific peptides.  相似文献   

6.
Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.  相似文献   

7.
A self-derived-peptide with the same amino acid sequence (N-RRYLENGKETLQR-C) as residues 169–181 of the human leukocyte antigen (HLA) B27 heavy chain is known to bind to MHC Class I complexes containing the HLA-B27 heavy chain. This observation has been invoked previously in at least two different (but related) molecular explanations for the disease-association of the HLA-B27 allele. Here, we use a combination of fluorescence polarization, competitive inhibition and gel filtration chromatographic studies to show that a fluorescently-labeled peptide of the above sequence binds to two disease-associated subtypes of HLA-B27 (namely HLA-B*27:04 and HLA-B*27:05) but not to non-disease-associated subtypes (HLA-B*27:06 or HLA-B*27:09). This differential binding behavior is seen both in (a) peptide binding to complexes of heavy chain (HLA-B27) and light chain (β2 microglobulin), and in (b) peptide binding to β2 microglobulin-free heavy chains in the aggregated state. Such subtype-specific differences are not seen with two other control peptides known to bind to HLA-B27. Our results support the likelihood of differential peptide binding holding at least one of the keys to HLA-B27’s disease association.  相似文献   

8.
The MHC class I molecule, HLA-B27 can be expressed as a number of non-conventional forms, in addition to conventional HLA-B27 heterodimers presenting peptide. This has lead to new avenues of research to explain the association of this molecule with SpA. Surprisingly, HLA-B27 transgenic animal models implicated CD4+ T cells, which conventionally interact with MHC class II molecules, not MHC class I molecules, in the pathogenesis of SpA. One hypothesis to explain these finding is that non-conventional forms of HLA-B27, specifically HLA-B27 homodimers, might mimic MHC class II molecules and be recognised by CD4+ T cells. We investigated whether CD4+ T cells from AS patients can interact with HLA-B27, discovering that indeed CD4+ T cells can interact with various forms of HLA-B27. Here we discuss how such interactions between HLA-B27 and CD4+ T cells could occur in vivo and potential contributions of such interactions to the pathogenesis of SpA.  相似文献   

9.
Designing synthetic vaccines from class I major histocompatibility complex (MHC)-binding antigenic peptides requires not only knowledge of the binding affinity of the designed peptide but also predicting the stability of the formed MHC-peptide complex. In order to better investigate structure-stability relationships, we have determined by circular dichroism spectroscopy the thermal stability of a class I MHC protein, HLA-B*2705, in complex with a set of 39 singly substituted peptide analogues. The influence of two anchoring side chains (P3 and P9) was studied by peptide mutation and appropriate site-directed mutagenesis of the HLA-B*2705 binding groove. The side chain at P9 is clearly the one that contributes the most to the thermal stability of the MHC-peptide complexes, as destabilization up to 25 degrees C are obtained after P9 mutation. Interestingly, structure-stability relationships do not fully mirror structure-binding relationships. As important as the C-terminal side chain are the terminal ammonium and carboxylate groups. Removal of a single H-bond between HLA-B27 and the terminal peptide moieties results in thermal destabilization up to 10 degrees C. Depending on the bound peptide and the location of the deleted H-bond, the decrease in the thermal stability of the corresponding complex is quantitatively different. The present study suggests that any peptidic amino acid at positions 3 and 9 promotes refolding of the B27-peptide complex. Once the complex is formed, the C-terminal side chain seems to play an important role for maintaining a stable complex.  相似文献   

10.
Recognition of self peptides bound to the class I major histocompatibility complex molecule HLA-B27 is thought to trigger proliferation of autoreactive T cells and result in autoimmune arthritic diseases. Previous work from other laboratories established that a predominant feature of endogenous peptides eluted from purified B27 is an arginine at position 2. We studied the binding of peptides containing both natural and unnatural amino acids by the subtype HLA-B*2702, with the goal of gaining insight into peptide binding by this B27 subtype that is associated with susceptibility to arthritic disease. A soluble from of B*2702 was depleted of endogenous peptides. We tested the binding of peptides substituted with cysteine, homocysteine, or an alpha-amino-epsilon-mercapto hexanoic acid side chain (Amh) instead of the naturally occurring arginine at position 2, to determine whether the peptide sulfhydryl residue could be covalently linked to cysteine 67 in the B*2702 binding cleft. Although none of the altered peptide sequences bound covalently to B*2702, the affinities of the homocysteine- and Amh-substituted peptides were close to that of the native peptide sequence. Substitutions at position 2 with other side chains, such as glutamine and methionine, also resulted in peptides that bound with only slightly reduced affinity. These results demonstrate that peptide side chains other than arginine at position 2 can be accomodated within the B*2702 peptide binding site with only minor reductions in affinity. This extended repertoire of permissible B27-binding peptides should be taken into account for a consideration of disease-associated peptide sequences.  相似文献   

11.
《The Journal of cell biology》1995,131(6):1403-1419
Misfolded membrane proteins are rapidly degraded, often shortly after their synthesis and insertion in the endoplasmic reticulum (ER), but the exact location and mechanisms of breakdown remain unclear. We have exploited the requirement of MHC class I molecules for peptide to achieve their correct conformation: peptide can be withheld by introducing a null mutation for the MHC-encoded peptide transporter, TAP. By withholding TAP-dependent peptides, the vast majority of newly synthesized class I molecules fails to leave the endoplasmic reticulum and is degraded. We used mice transgenic for HLA-B27 on a TAP1- deficient background to allow visualization by immunoelectron microscopy of misfolded HLA-B27 molecules in thymic epithelial cells. In such HLA transgenic animals, the TAP mutation can be considered a genetic switch that allows control over the extent of folding of the protein of interest, HLA-B27, while the rate of synthesis of the constituent subunits remains unaltered. In TAP1-deficient, HLA-B27 transgenic animals, HLA-B27 molecules fail to assemble correctly, and do not undergo carbohydrate modifications associated with the Golgi apparatus, such as conversion to Endoglycosidase H resistance, and acquisition of sialic acids. We show that such molecules accumulate in an expanded network of tubular and fenestrated membranes. This compartment has its counterpart in normal thymic epithelial cells, and is identified as an ER-Golgi intermediate. We detect the presence of ubiquitin and ubiquitin-conjugating enzymes in association with this compartment, suggesting a nonlysosomal mode of degradation of its contents.  相似文献   

12.
Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthropathy. In addition to being strongly associated with HLA-B27, a further 13 genes have been robustly associated with the disease. These genes highlight the involvement of the IL-23 pathway in disease pathogenesis, and indicate overlaps between the pathogenesis of AS, and of inflammatory bowel disease. Genetic associations in B27-positive and -negative disease are similar, with the main exception of association with ERAP1, which is restricted in association to B27-positive cases. This restriction, and the known function of ERAP1 in peptide trimming prior to HLA Class I presentation, indicates that HLA-B27 is likely to operate in AS by a mechanism involving aberrant peptide handling. These advances point to several potential novel therapeutic approaches in AS.  相似文献   

13.
HLA-B27 plays a central role in the pathogenesis of many spondyloarthropathies and in particular ankylosing spondylitis. The observation that the HLA-B27 heavy chain has a tendency to misfold has raised the possibility that associated diseases may belong in a rapidly expanding category of protein misfolding disorders. The synthesis of the HLA-B27 heavy chain, assembly with β2m and the loading of peptide cargo, occurs in the endoplasmic reticulum (ER) before transport to the cell surface. The evidence indicates that misfolding occurs in the ER prior to β2m association and peptide optimization and is manifested in the formation of aberrant inter- and intra-chain disulfide bonds and accumulation of heavy chain bound to the chaperone BiP. Enhanced accumulation of misfolded heavy chains during the induction of class I expression by cytokines, can cause ER stress resulting in activation of the unfolded protein response (UPR).Effects of UPR activation on cytokine production are beginning to emerge and may provide important missing links between HLA-B27 misfolding and spondyloarthritis. In this chapter we will review what has been learned about HLA-B27 misfolding in human cells and in the transgenic rat model of spondyloarthritis-like disease, considering it in the context of other protein misfolding disorders. These studies provide a framework to support much needed translational work assessing HLA-B27 misfolding and UPR activation in patient-derived material, its consequences for disease pathogenesis and ultimately how and where to focus intervention strategies.Key words: ankylosing spondylitis, arthritis, protein misfolding, unfolded protein response, interleukin (IL)-17, cytokines  相似文献   

14.
The pathology of ankylosing spondylitis, reactive arthritis, and other spondyloarthropathies (SpA) is closely associated with the human leukocyte class I Ag HLA-B27. A characteristic finding in SpA is inflammation of cartilage structures of the joint, in particular at the site of ligament/tendon and bone junction (enthesitis). In this study, we investigated the role of CD8+ T cells in response to the cartilage proteoglycan aggrecan as a potential candidate autoantigen in BALB/c-B27 transgenic mice. We identified four new HLA-B27-restricted nonamer peptides, one of them (no. 67) with a particularly strong T cell immunogenicity. Peptide no. 67 immunization was capable of stimulating HLA-B27-restricted, CD8+ T cells in BALB/c-B27 transgenic animals, but not in wild-type BALB/c mice. The peptide was specifically recognized on P815-B27 transfectants by HLA-B27-restricted CTLs, which were also detectable by HLA tetramer staining ex vivo as well as in situ. Most importantly, analysis of the joints from peptide no. 67-immunized mice induced typical histological signs of SpA. Our data indicate that HLA-B27-restricted epitopes derived from human aggrecan are involved in the induction of inflammation (tenosynovitis), underlining the importance of HLA-B27 in the pathogenesis of SpA.  相似文献   

15.
Crystallographic studies have suggested that the cysteine at position 67 (Cys(67)) in the B pocket of the MHC molecule HLA-B*2705 is of importance for peptide binding, and biophysical studies have documented altered thermodynamic stability of the molecule when Cys(67) was mutated to serine (Ser(67)). In this study, we used HLA-B27.Cys(67) and HLA-B27.Ser(67) tetramers with defined T cell epitopes to determine the contribution of this polymorphic, solvent-inaccessible MHC residue to T cell recognition. We generated these HLA-B27 tetramers using immunodominant viral peptides with high binding affinity to HLA-B27 and cartilage-derived peptides with lower affinity. We demonstrate that the yield of refolding of HLA-B27.Ser(67) molecules was higher than for HLA-B27.Cys(67) molecules and strongly dependent on the affinity of the peptide. T cell recognition did not differ between HLA-B27.Cys(67) and HLA.B27.Ser(67) tetramers for the viral peptides that were investigated. However, an aggrecan peptide-specific T cell line derived from an HLA-B27 transgenic BALB/c mouse bound significantly stronger to the HLA-B27.Cys(67) tetramer than to the HLA-B27.Ser(67) tetramer. Modeling studies of the molecular structure suggest the loss of a SH ... pi hydrogen bond with the Cys-->Ser substitution in the HLA-B27 H chain which reduces the stability of the HLA-B27/peptide complex. These results demonstrate that a solvent-inaccessible residue in the B pocket of HLA-B27 can affect TCR binding in a peptide-dependent fashion.  相似文献   

16.
The human HLA-B27 class I molecule exhibits a strong association with the inflammatory arthritic disorder ankylosing spondylitis and other related arthropathies. Major histocompatibility complex class I heavy chains normally associate with beta(2)-microglobulin and peptide in the endoplasmic reticulum before transit to the cell surface. However, an unusual characteristic of HLA-B27 is its ability to form heavy chain homodimers through an unpaired cysteine at position 67 in the peptide groove. Homodimers have previously been detected within the ER and at the cell surface, but their mechanism of formation and role in disease remain undefined. Here we demonstrate, in the rat C58 thymoma cell line and in human HeLa cells transfected with HLA-B27, that homodimer formation involves not only cysteine at position 67 but also the conserved structural cysteine at position 164. We also show that homodimer formation can be induced in the non-disease-associated HLA class I allele HLA-A2 by slowing its assembly rate by incubation of cells at 26 degrees C, suggesting that homodimer formation in the endoplasmic reticulum may occur as a result of the slower folding kinetics of HLA-B27. Finally, we report an association between unfolded HLA-B27 molecules and immunoglobulin-binding protein at the cell surface.  相似文献   

17.
For more than 30 years, human leukocyte antigen B27 (HLA-B27) has been known to be closely related to the autoimmune disease ankylosing spondylitis, yet little is known about the molecular mechanisms of pathogenesis. Crystal structures of two closely related, but differently disease-associated, subtypes (B*2705 and B*2709) also did not resolve this situation as they revealed the bound nonapeptide in essentially identical conformations. As the peptide is part of putative binding epitopes for the T cell receptor, we performed molecular dynamics simulations to gain deeper insight into the dynamic behaviour of HLA-B27 molecules. We find increased flexibility of the peptide in the binding groove of subtype B*2709 due to weaker interactions in the F pocket. Possible implications of this flexibility for T cell recognition and signalling are discussed.Abbreviations 2m 2-microglobulin - AS ankylosing spondylitis - CDR complementarity determining region - HC heavy chain - HLA human leukocyte antigen - MD molecular dynamics - MHC major histocompatibility complex - pMHC peptide-loaded MHC - RMSD root mean square deviation - RMSF root mean square fluctuation - TCR T cell receptor An erratum to this article can be found at  相似文献   

18.
Tumor-homing peptides that recognize specific markers on tumor cells have shown potential as drug carriers for targeted cancer therapy. Bombesin receptors are frequently overexpressed or ectopically expressed in a wide range of human tumors. Bombesin and its analogues have been widely used as drug carriers for tumor imaging and tumor therapy. However, the cargos used in previous studies, including radioactive and chemotherapeutic agents, are usually small molecules. Mitochondrial-disrupting peptides depolarize the mitochondria and trigger apoptosis after entering tumor cells. We are interested in whether the bombesin analogue, Bn(6–14), which contains a bombesin receptor-binding motif, can specifically deliver the mitochondria-disrupting peptide, B28, to tumor cells. To this end, we created a chimeric peptide, B28Bn(6–14), by conjugating B28 to Bn(6–14) at its N-terminus. The cytotoxicity of B28Bn(6–14) in tumor cells was much stronger than unconjugated B28. The IC50 values of B28Bn(6–14) in tumor cells (1.7–3.5 µM) were approximately 10 times lower than B28. However, conjugation of B28 to Bn(2–7), which lacks the bombesin receptor-binding motif, did not increase its cytotoxicity. In addition, the IC50 values of B28Bn(6–14) in tumor cells (1.7–3.5 µM) was 3–10 times lower than in normal cells (10.8–16.8 µM). We found that selective binding of B28Bn(6–14) to tumor cells is Bn(6–14)-dependent. Upon entering the tumor cell, B28Bn(6–14) accumulated in the mitochondria and triggered caspase-dependent apoptosis. Intratumoral and intraperitoneal administration of B28Bn(6–14) substantially suppressed the growth of DU145 tumor xenografts in mice. These results demonstrate that Bn(6–14) is able to deliver the mitochondria-disrupting peptide to tumor cells, and B28Bn(6–14) should be further developed as novel anti-cancer agent.  相似文献   

19.
《Molecular medicine today》1998,4(12):540-549
Ankylosing spondylitis (AS), reactive arthritis (ReA) and other related spondyloarthropathies (SpAs) are characterized by a strong association with the major histocompatibility complex allele HLA-B27. Experimental evidence from humans and transgenic rodents suggests that HLA-B27 is itself involved in the pathogenesis of SpA. Population and peptide-specificity analysis of HLA-B27 suggest it has a pathogenic function related to antigen presentation. Putative roles for infectious agents have been proposed in ReA and suggested in AS. However, the mechanism by which HLA-B27 and bacteria interact to induce arthritis is not clear. Molecular mimicry between bacterial epitopes that cross-react with self-B27 peptides is the most persuasive explanation for the pathogenesis of SpA. The experimental studies reviewed here have greatly increased our knowledge of the structure, function and disease association of HLA-B27.  相似文献   

20.
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a “super-bulged” viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely “bypassing” the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with “bulged” pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号