首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukotrienes, the lipid inflammatory products derived from arachidonic acid, are involved in the pathogenesis of respiratory and cardiovascular diseases and reactive airway disease in sickle cell disease. Placenta growth factor (PlGF), elaborated from erythroid cells, increased the mRNA expression of 5-lipoxygenase and 5-lipoxygenase-activating protein (FLAP) in human pulmonary microvascular endothelial cells. PlGF-induced both promoter activity and mRNA expression of hypoxia-inducible factor-1α (HIF-1α), which was abrogated by early growth response-1 (EGR-1) small interfering RNA. PlGF showed a temporal reciprocal relationship in the mRNA levels of EGR-1 and NAB2, the latter a repressor of Egr-1. Moreover, Nab2, but not mutant Nab2, significantly reduced promoter activity and mRNA expression of HIF-1α and also reduced expression of the HIF-1α target gene FLAP. Furthermore, overexpression of Egr-1 led to increased promoter activities for both HIF-1α and FLAP in the absence of PlGF. Additionally, the Egr-1-mediated induction of HIF-1α and FLAP promoters was reduced to basal levels by EGR-1 small interfering RNA. The binding of Egr-1 to HIF-1α promoter was corroborated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay, which showed increased Egr-1 binding to the HIF-1α promoter in response to PlGF stimulation. These studies provide a novel mechanism for PlGF-mediated regulation of HIF-1α via Egr-1, which results in increased FLAP expression. This study provides a new therapeutic target, namely Egr-1, for attenuation of elevated leukotriene levels in patients with sickle cell disease and other inflammatory diseases.  相似文献   

2.
3.
Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.  相似文献   

4.

Background

The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear.

Methods

In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2) by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1) as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques.

Results

We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells.

Conclusion

Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.  相似文献   

5.
Hozumi  I.  Inuzuka  T.  Tsuji  S. 《Neurochemical research》1998,23(3):319-328
Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.  相似文献   

6.
Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it coordinates signaling between these two receptor-linked signaling systems.  相似文献   

7.
Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca2+/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing.  相似文献   

8.
Signals that activate the G protein Gαs and promote neuronal differentiation evoke Gαs internalization in rat pheochromocytoma (PC12) cells. These agents also significantly increase Gαs association with microtubules, resulting in an increase in microtubule dynamics because of the activation of tubulin GTPase by Gαs. To determine the function of Gαs/microtubule association in neuronal development, we used real-time trafficking of a GFP-Gαs fusion protein. GFP-Gαs concentrates at the distal end of the neurites in differentiated living PC12 cells as well as in cultured hippocampal neurons. Gαs translocates to specialized membrane compartments at tips of growing neurites. A dominant-negative Gα chimera that interferes with Gαs binding to tubulin and activation of tubulin GTPase attenuates neurite elongation and neurite number both in PC12 cells and primary hippocampal neurons. This effect is greatest on differentiation induced by activated Gαs. Together, these data suggest that activated Gαs translocates from the plasma membrane and, through interaction with tubulin/microtubules in the cytosol, is important for neurite formation, development, and outgrowth. Characterization of neuronal G protein dynamics and their contribution to microtubule dynamics is important for understanding the molecular mechanisms by which G protein-coupled receptor signaling orchestrates neuronal growth and differentiation.  相似文献   

9.
Methanobacterium thermoautotrophicum was grown on a mineral salts medium in a fermenter gassed with H2 and CO2, which were the sole carbon and energy sources. Under the conditions used the bacterium grew exponentially. The dependence of the growth rate () on the concentration of H2 and CO2 in the incoming gas and the dependence of the growth yield ( ) on the growth rate were determined at pH 7 (the pH optimum) and 65° C (the temperature optimum).The curves relating growth rate to the H2 and CO2 concentration were hyperbolic. From reciprocal plots apparent K s values for H2 and CO2 and max were obtained: app. = 20%; app. = 11%; = 0.69 h-1; t (max)=1 h. was 1.6 g mol-1 and almost independent of the growth rate, when the rate of methane formation was not limited by the supply of either H2 or CO2. The yield increased to near 3 g mol-1 when H2 or CO2 were limiting. These findings indicate that methane formation and growth are less tightly coupled at high concentrations of H2 or CO2 in the medium than at low concentrations. The physiological significance of these findings is discussed. K s: H2 and CO2 concentration supporting 0.5 max; max: specific growth rate at infinite substrate concentration; Y s:growth yield (g dry weight/mol substrate); t : doubling time  相似文献   

10.
11.
该书于1982年由哈佛大学出版社出版,作者Ernst.Mayr生前为美国科学院院士及哈佛大学名誉教授。他长期从事动物学的教学与研究,在进化生物学及物种起源等领域获得了许多重要成果。该书出版后立刻引起高度关注,1982年即有德文  相似文献   

12.
13.
Acute coronary syndrome (ACS) is the leading cause of death in elderly patients worldwide. Due its participation in apoptosis, fibrosis, and angiogenesis, transforming growth factor-β (TGF-β) isoforms had been categorized as risk factors for cardiovascular diseases. However, due their contradictory activities, a cardioprotective role has been suggested. The aim was to measure the plasma levels of TGF-β1, 2, and 3 proteins in patients with ACS. This was a case–control study including 225 subjects. The three activated isoforms were measured in serum using the Bio-Plex Pro TGF-β assay by means of magnetic beads; the fluorescence intensity of reporter signal was read in a Bio-Plex Magpix instrument. We observed a significant reduction of the three activated isoforms of TGF-β in patients with ACS. The three TGF-β isoforms were positively correlated with each other in moderate-to-strong manner. TGFβ-2 was inversely correlated with glucose and low-density lipoprotein (LDL)-cholesterol, whereas TGF-β3 was inversely correlated with the serum cholesterol concentration. The production of TGF-β1, TGF-β2, and TGF-β3 are decreased in the serum of patients with ACS. Further follow-up controlled studies with a larger sample size are needed, in order to test whether TGF-β isoforms could be useful as biomarkers that complement the diagnosis of ACS.  相似文献   

14.
Platelets are immunologically competent cells containing cytokines such as TGF-β1 that regulate cell-mediated immunity. However, the mechanisms underlying cytokine secretion from platelets are undefined. The Wiskott-Aldrich syndrome protein (WASp) regulates actin polymerization in nucleated hematopoietic cells but has other role(s) in platelets. WASp-null (WASp−/−) platelets stimulated with a PAR-4 receptor agonist had increased TGF-β1 release compared with WT platelets; inhibiting WASp function with wiskostatin augmented TRAP-induced TGF-β1 release in human platelets. TGF-β1 release is dissociated from α-granule secretion (P-selectin up-regulation) and occurs more gradually, with ∼10–15% released after 30–60 min. Blockade of Src family kinase-mediated WASp Tyr-291/Tyr-293 phosphorylation increased TGF-β1 release, with no additive effect in WASp−/− platelets, signifying that phosphorylation is critical for WASp-limited TGF-β1 secretion. Inhibiting F-actin assembly with cytochalasin D enhanced secretion in WT platelets and further increased TGF-β1 release in WASp−/− platelets, indicating that WASp and actin assembly independently regulate TGF-β1 release. A permeabilized platelet model was used to test the role of upstream small GTPases in TGF-β1 release. N17Cdc42, but not Rac1 mutants, increased TGF-β1 secretion and abrogated WASp phosphorylation. We conclude that WASp function restricts TGF-β1 secretion in a Cdc42- and Src family kinase-dependent manner and independently of actin assembly.  相似文献   

15.
16.
17.
Granulosa cell tumors (GCTs) are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.  相似文献   

18.
Growth–defense tradeoffs are foundational to plant defense theory, but few studies have addressed the role of plant gender in such tradeoffs. We used an experimental trial garden of mature, dioecious Populus tremuloides trees to assess gender-based differences in growth, defense, and growth–defense tradeoffs. Male trees were 9% larger than female trees in terms of diameter-at-breast height (dbh) and had levels of defense chemicals [phenolic glycosides (PGs) and condensed tannins (CTs)] similar to those of females. Although male and female aspen had roughly similar levels of growth and defense, growth–defense tradeoffs differed markedly by gender. Growth of males was not related to either PG or CT concentrations, while growth of females was positively correlated with PG concentrations and negatively correlated with CT concentrations. Higher levels of PGs, if present throughout the life of a tree, may be protective against herbivores and result in greater growth over time.  相似文献   

19.
Very large amount of microbialites, up to 70% of the reef volume takes part in the edification of Lower Bajocian coral reefs in the Chargey-lès-Port quarry (Haute-Saône, France). Such high amounts of microbialites were unknown within bioconstructions of Middle Jurassic age. Along the 16 m-thick section, seven successive biohermal or biostromal units developed on a shallow platform. Bioconstructions display a first coral growth phase with either constratal or superstratal growth fabrics. Coral fauna is relatively poorly diversified and is dominated by massive forms (Isastrea, Thamnasteria, and Periseris) or branched phaceloid (Cladophyllia) and ramose (Dendraraea) colonies. Corals can be heavily encrusted by microbialites of diverse forms and fabrics (leiolitic, thrombolitic, and stromatolitic). According to the coral growth fabrics, microbialite crusts developed on top of or at the underside of coral colonies, forming a coral-microbialite elementary unit. Microbialites show a multiphase development: (i) directly at the coral surface, a first and mm-scale microbialite layer locally developed; (ii) a second, cm-scale microbialite layer (up to 8 cm thick) covered the entire coral reef framework and assumed the main building role; and (iii) a third, mm- to cm-scale, laminated microbialite layer may also be observed onlapping previous reef structures, before having been progressively buried under sediments. Contemporaneously to the coral growth phase, the first microbialite layer developed on dead portions of coral colonies. The transition between coral growth and microbialite development (i.e., second layer of microbialites) is interpreted as a result of a coral reef crisis, probably reflecting more nutrient-rich conditions. The passage to a stromatolitic (third) layer suggests a control of the accumulation rate. Composition and architecture of coral-microbialite reef units of Chargey-lès-Port highlight the relations between high-frequency fluctuating environmental factors (mainly accumulation rate and trophic conditions) and reef development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号