首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NF449, a sulfated compound derived from the antiparasitic drug suramin, was previously reported to inhibit infection by enterovirus A71 (EV-A71). In the current work, we found that NF449 inhibits virus attachment to target cells, and specifically blocks virus interaction with two identified receptors—the P-selectin ligand, PSGL-1, and heparan sulfate glycosaminoglycan—with no effect on virus binding to a third receptor, the scavenger receptor SCARB2. We also examined a number of commercially available suramin analogues, and newly synthesized derivatives of NF449; among these, NF110 and NM16, like NF449, inhibited virus attachment at submicromolar concentrations. PSGL-1 and heparan sulfate, but not SCARB2, are both sulfated molecules, and their interaction with EV-A71 is thought to involve positively charged capsid residues, including a conserved lysine at VP1-244, near the icosahedral 5-fold vertex. We found that mutation of VP1-244 resulted in resistance to NF449, suggesting that this residue is involved in NF449 interaction with the virus capsid. Consistent with this idea, NF449 and NF110 prevented virus interaction with monoclonal antibody MA28-7, which specifically recognizes an epitope overlapping VP1-244 at the 5-fold vertex. Based on these observations we propose that NF449 and related compounds compete with sulfated receptor molecules for a binding site at the 5-fold vertex of the EV-A71 capsid.  相似文献   

2.
Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.  相似文献   

3.
Human enterovirus species A (HEV-A) consists of at least 16 members of different serotypes that are known to be the causative agents of hand, foot, and mouth disease (HFMD), herpangina, and other diseases, such as respiratory disease and polio-like flaccid paralysis. Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the major causative agents of HFMD. CVA5, CVA6, CVA10, and CVA12 mainly cause herpangina or are occasionally involved with sporadic cases of HFMD. We have previously shown that human scavenger receptor class B, member 2 (SCARB2) is a cellular receptor for EV71 and CVA16. Using a large number of clinical isolates of HEV-A, we explored whether all clinical isolates of EV71 and other serotypes of HEV-A infected cells via SCARB2. We tested this possibility by infecting L-SCARB2 cells, which are L929 cells expressing human SCARB2, by infecting human RD cells that had been treated with small interfering RNAs for SCARB2 and by directly binding the viruses to a soluble SCARB2 protein. We showed that all 162 clinical isolates of EV71 propagated in L-SCARB2 cells, suggesting that SCARB2 is the critical receptor common to all EV71 strains. In addition, CVA7, CVA14, and CVA16, which are most closely related to each other, also utilized SCARB2 for infection. EV71, CVA14, and CVA16 are highly associated with HFMD, and EV71 and CVA7 are occasionally associated with neurological diseases, suggesting that SCARB2 plays important roles in the development of these diseases. In contrast, another group of viruses, such as CVA2, CVA3, CVA4, CVA5, CVA6, CVA8, CVA10, and CVA12, which are relatively distant from the EV71 group, is associated mainly with herpangina. None of these clinical isolates infected via the SCARB2-dependent pathway. HEV-A viruses can be divided into at least two groups depending on the use of SCARB2, and the receptor usage plays an important role in developing the specific diseases for each group.  相似文献   

4.
Yang SL  Chou YT  Wu CN  Ho MS 《Journal of virology》2011,85(22):11809-11820
Enterovirus type 71 (EV71) causes hand, foot, and mouth disease (HFMD), which is mostly self-limited but may be complicated with a severe to fatal neurological syndrome in some children. Understanding the molecular basis of virus-host interactions might help clarify the largely unknown neuropathogenic mechanisms of EV71. In this study, we showed that human annexin II (Anx2) protein could bind to the EV71 virion via the capsid protein VP1. Either pretreatment of EV71 with soluble recombinant Anx2 or pretreatment of host cells with an anti-Anx2 antibody could result in reduced viral attachment to the cell surface and a reduction of the subsequent virus yield in vitro. HepG2 cells, which do not express Anx2, remained permissive to EV71 infection, though the virus yield was lower than that for a cognate lineage expressing Anx2. Stable transfection of plasmids expressing Anx2 protein into HepG2 cells (HepG2-Anx2 cells) could enhance EV71 infectivity, with an increased virus yield, especially at a low infective dose, and the enhanced infectivity could be reversed by pretreating HepG2-Anx2 cells with an anti-Anx2 antibody. The Anx2-interacting domain was mapped by yeast two-hybrid analysis to VP1 amino acids 40 to 100, a region different from the known receptor binding domain on the surface of the picornavirus virion. Our data suggest that binding of EV71 to Anx2 on the cell surface can enhance viral entry and infectivity, especially at a low infective dose.  相似文献   

5.
肠道病毒71型(enterovirus 71, EV71)感染常导致婴幼儿手足口病(hand, foot and mouth disease, HFMD),细菌脂多糖(lipopolysaccharide, LPS)在多种肠道病毒感染过程中起重要作用。本研究旨在探讨细菌LPS对EV71感染的影响。将EV71与LPS共孵育,测定病毒被热处理后残留病毒的活力,以及病毒感染过程中病毒基因拷贝数的变化。结果显示,热处理后病毒活力逐渐丧失,而经LPS处理的病毒活力丧失的速度减缓,且残留病毒活力与LPS浓度呈正相关;LPS处理后的病毒在黏附、侵入、胞内复制及释放过程中基因拷贝数较对照组均降低;免疫印迹分析表明LPS与抗VP1单克隆抗体可竞争性结合EV71,且粪便中的EV71可被抗大肠埃希菌抗体识别。上述结果提示,LPS可增强EV71热稳定性,抑制EV71感染过程,且LPS可能与EV71结合。  相似文献   

6.

Background

EV71 is one of major etiologic causes of hand-foot-mouth disease (HFMD) and leads to severe neurological complications in young children and infants. Recently inactivated EV71 vaccines have been developed by five manufactures and clinically show good safety and immunogenicity. However, the cross-neutralizing activity of these vaccines remains unclear, and is of particular interest because RNA recombination is seen more frequently in EV71 epidemics.

Methodology/Principal Findings

In this post-hoc study, sera from a subset of 119 infants and children in two clinical trials of EV71 subgenotype C4 vaccines (ClinicalTrials.gov Identifier: NCT01313715 and NCT01273246), were detected for neutralizing antibody (NTAb) titres with sera from infected patients as controls. Cytopathogenic effect method was employed to test NTAb against EV71 subgenotype B4, B5, C2, C4 and C5, which were prominent epidemic strains worldwide over the past decade. To validate the accuracy of the results, ELISpot assay was employed in parallel to detect NTAb in all the post-vaccine sera. After two-dose vaccination, 49 out of 53 participants in initially seronegative group and 52 out of 53 participants in initially seropositive group showed less than 4-fold differences in NTAb titers against five EV71 strains, whereas corresponding values among sera from pediatric patients recovering from EV71-induced HFMD and subclinically infected participants were 8/8 and 41/43, respectively. The geometric mean titers of participants against five subgenotypes EV71 all grew significantly after vaccinations, irrespective of the baseline NTAb titer. The relative fold increase in antibody titers (NTAb-FI) against B4, B5, C2, and C5 displayed a positive correlation to the NTAb-FI against C4.

Conclusions/Significance

The results demonstrated broad cross-neutralizing activity induced by two C4 EV71 vaccines in healthy Chinese infants and children. However, the degree of induced cross-protective immunity, and the potential escape evolution for EV71 still need to be monitored and researched in future for these new vaccines.  相似文献   

7.
Enterovirus A71 (EV‐A71), one of the most important causative agents of hand, foot and mouth disease (HFMD) in children, can lead to severe clinical outcomes, even death. However, the infection spectrum of EV‐A71 in different cell lines remains unknown. Therefore, in this study, the biological characteristics of EV‐A71 Subgroup C4 in different cell lines were investigated. To this end, the infectivity of EV‐A71Jinan1002 isolated from children with severe HFMD was assessed in 18 different host cell lines. It was found that the MA104 cell line displayed biological characteristics suitable for EV‐A71 Subgroup C4 strain isolation and proliferation; indeed, it was found that a broad spectrum of cell lines can be infected by EV‐A71Jinan1002. Among the screened cells, four cell lines (HEK293, RD, MA104 and Marc145) produced high 50% tissue culture infective dose (TCID50) values calculated in viral proliferations (ranged from 107.6 to 107.8); the TCID50 being negatively associated with the time to appearance of CPE. Proliferation curves demonstrated that EV‐A71Jinan1002 amplifies more efficiently in MA104, Hep‐2 and RD cells. Remarkably, the virus isolation rate was much higher in MA104 cells than in RD cells. Thus this study, to our knowledge, is for the first to explore the infection spectrum of EV‐A71 subgroup C4 in such a large number of different cell lines. Our data provide useful reference data for facilitating further study of EV‐A71.  相似文献   

8.
Liu MY  Liu W  Luo J  Liu Y  Zhu Y  Berman H  Wu J 《PloS one》2011,6(9):e25287
Recent outbreaks of human enterovirus 71 (EV71) infection and EV71-associated hand, foot, and mouth disease (HFMD) in China have affected millions and potentially lead to life-threatening complications in newborns. Furthermore, these outbreaks represent a significant global public health issue in the world. Understanding the epidemiology of HFMD and EV71 infection and their transmission patterns in China is essential for controlling outbreaks. However, no studies on the outbreaks of HFMD and EV71 infection in China during 2010 have been reported. In this report, we carried out an epidemiological analysis to study an outbreak of HFMD and EV71 infection in 2010 in the city of Nanchang in the Jiangxi province of People's Republic of China. From April 7 to May 11, 2010, a total of 109 HFMD cases were reported, and in this report the HFMD cases were studied by both epidemiological and laboratory analyses. The epidemiological study indicates that children aged younger than 8 years old represented more than 90% of the reported cases, with the age group of 1-3 years containing the highest number of cases. Laboratory studies detected a high prevalence of EV71 amongst the cases in our study, suggesting EV71 as a common enterovirus found in HFMD cases in Nanchang. Phylogenetic analysis of the sequence of the VP1 region of four EV71 isolates indicated that the Nanchang strains belong to the C4 subgenotype commonly found in China during outbreaks in 2008 but contain distinct variations from these strains. Our study for the first time characterizes the epidemiology of HFMD and EV71 infection in China in 2010 and furthermore, provides the first direct evidence of the genotype of EV71 circulating in Nanchang, China. Our study should facilitate the development of public health measures for the control and prevention of HFMD and EV71 infection in at-risk individuals in China.  相似文献   

9.

Background

Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac) at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16.

Methods

Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses.

Results

The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had <8 pre-vaccination neutralization titers (Nt) against the B4 vaccine strain. After the first EV71vac immunization, 95% of vaccinees have >4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants) against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8) against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16.

Conclusion

EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials.

Trial Registration

ClinicalTrials.gov __NCT01268787  相似文献   

10.
Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the EV71 poly-protein (EV71-P1 protein) gene was processed and cloned into the eukaryotic expression vector pPIC9k and then expressed in Pichia pastoris strain GS115. The EV71 P1 protein with a molecular weight of 100 kD was produced and secreted into the medium. The soluble EV71 P1 protein was purified by column chromatography with a recovery efficiency of 70%. The result of the immunological analysis showed that the EV71 P1 protein had excellent immunogenicity and could stimulate the production of EV71-VP1 IgG antibody in injected rabbits. We suggest that EV71-P1 protein is an ideal candidate for an EV71 vaccine to prevent EV71 infection.  相似文献   

11.
Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5′ UTR, VP1, 3C, 3D, 3′ UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.  相似文献   

12.
The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was approximately a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate.  相似文献   

13.
Enterovirus 71(EV71) is one of the main pathogens that causes hand-foot-and-mouth disease(HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 noncoding regions(50 UTR and 30 UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.  相似文献   

14.
Enterovirus 71 (EV71) causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A∼C) including 11 genotypes (A, B1∼B5, and C1∼C5). Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧8-fold difference) and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.  相似文献   

15.
The structure of virus-like particles of the lymphotropic, immunosuppressive strain of minute virus of mice (MVMi) in complex with the neutralizing Fab fragment of the mouse monoclonal antibody (MAb) B7 was determined by cryo-electron microscopy to 7-A resolution. The Fab molecule recognizes a conformational epitope at the vertex of a three-fold protrusion on the viral surface, thereby simultaneously engaging three symmetry-related viral proteins in binding. The location of the epitope close to the three-fold axis is consistent with the previous analysis of MVMi mutants able to escape from the B7 antibody. The binding site close to the symmetry axes sterically forbids the binding of more than one Fab molecule per spike. MAb as well as the Fab molecules inhibits the binding of the minute virus of mice (MVM) to permissive cells but can also neutralize MVM postattachment. This finding suggests that the interaction of B7 with three symmetry-related viral subunits at each spike hinders structural transitions in the viral capsid essential during viral entry.  相似文献   

16.
The association of an anti-dinitrophenyl monoclonal antibody and its Fab fragment with supported phospholipid monolayers composed of a mixture of dipalmitoylphosphatidylcholine and dinitrophenyl-conjugated dipalmitoylphosphatidylethanolamine has been characterized with total internal reflection fluorescence microscopy. The surface densities of bound antibodies were measured as a function of the antibody and Fab solution concentrations, and as a function of the solution concentration of dinitrophenylglycine. The apparent association constant of Fab fragments with surface-associated haptens was approximately 10-fold lower than the association constant for haptens in solution, and the apparent surface association constant for intact antibodies was only approximately 10-fold higher than the constant for Fab fragments. Data analysis with simple theoretical models indicated that, at most antibody surface densities, 50-90% of membrane-associated intact antibodies were attached to the surface by two antigen binding sites.  相似文献   

17.
Immunoglobulins of human heavy chain subgroup III have a binding site for Staphylococcal protein A on the heavy chain variable domain (V(H)), in addition to the well-known binding site on the Fc portion of the antibody. Thermodynamic characterization of this binding event and localization of the Fv-binding site on a domain of protein A is described. Isothermal titration calorimetry (ITC) was used to characterize the interaction between protein A or fragments of protein A and variants of the hu4D5 antibody Fab fragment. Analysis of binding isotherms obtained for titration of hu4D5 Fab with intact protein A suggests that 3-4 of the five immunoglobulin binding domains of full length protein A can bind simultaneously to Fab with a Ka of 5.5+/-0.5 x 10(5) M(-1). A synthetic single immunoglobulin binding domain, Z-domain, does not bind appreciably to hu4D5 Fab, but both the E and D domains are functional for hu4D5 Fab binding. Thermodynamic parameters for titration of the E-domain with hu4D5 Fab are n = 1.0+/-0.1, Ka = 2.0+/-0.3 x 10(5) M(-1), and deltaH = -7.1+/-0.4 kcal mol(-1). Similar binding thermodynamics are obtained for titration of the isolated V(H) domain with E-domain indicating that the E-domain binding site on Fab resides within V(H). E-domain binding to an IgG1 Fc yields a higher affinity interaction with thermodynamic parameters n = 2.2+/-0.1, Ka > 1.0 x 10(7) M(-1), and deltaH = -24.6+/-0.6 kcal mol(-1). Fc does not compete with Fab for binding to E-domain indicating that the two antibody fragments bind to different sites. Amide 1H and 15N resonances that undergo large changes in NMR chemical shift upon Fv binding map to a surface defined by helix-2 and helix-3 of E-domain, distinct from the Fc-binding site observed in the crystal structure of the B-domain/Fc complex. The Fv-binding region contains negatively charged residues and a small hydrophobic patch which complements the basic surface of the region of the V(H) domain implicated previously in protein A binding.  相似文献   

18.
We have investigated the interaction of targeted liposomes with human erythrocytes, and K562 cells, a human leukemic line which expresses both glycophorin A and Fc receptors. Liposomes conjugated to monoclonal anti-human glycophorin A bind to human erythrocytes in 80-fold greater amounts than liposomes conjugated to a non-specific monoclonal antibody. Binding is inhibited by soluble anti-glycophorin but not by its Fab fragment. In contrast, binding of antibody-conjugated liposomes to K562 cells is very high irrespective of the specificity of the antibody. Liposomes conjugated to a nonspecific monoclonal antibody interact with K562 cells via an Fc receptor, and binding is inhibited by soluble human IgG. Liposomes conjugated to anti-human glycophorin A interact with K562 cells via an Fc receptor and glycophorin A. Binding is not inhibited by either human IgG or anti-glycophorin Fab alone. Binding is only partially inhibited by anti-glycophorin, or by human IgG in the presence of anti-glycophorin Fab, and completely inhibited only by human IgG in the presence of anti-glycophorin. Simultaneous binding of targeted liposomes to two cell membrane antigens is therefore partially resistant to inhibition by single soluble ligands even when they are present in large excess. We conclude that simultaneous binding to more than one receptor may be of considerable advantage for in vivo applications of targeted liposomes.  相似文献   

19.
Few outbreaks of the serious enterovirus 71 (EV71) infections, which affect the central nervous system (CNS), had been reported in Japan before 2000. During June through August 2000, a patient died of pulmonary edema caused by brainstem encephalitis accompanied by EV71-induced hand, foot, and mouth disease (HFMD), and many patients complicated by serious CNS disease, including paralysis, were hospitalized in a restricted area in Hyogo Prefecture, Japan (K-area). During the same period, endemics of HFMD were reported in other areas in Hyogo Prefecture, where EV71 was isolated from HFMD patients, but few patients developed aseptic meningitis. The isolations of EV71 from K-area patients were difficult with the use of Vero cells, so the strains were isolated by use of GL37 cells; Vero cells, however, could isolate EV71 strains from other areas in Hyogo Prefecture. We sequenced VP4 coding regions of these EV71 isolates and found that the isolates from K-area had the same sequence, which, except for one isolate, was different from the sequences of EV71 strains isolated from other areas of Hyogo Prefecture. Although these results were not enough to state that EV71 from K-area was a virulent strain, it seemed reasonable to conclude that serious CNS diseases in K-area were caused by EV71 because it was the only infectious agent detected in the inpatients of K-area.  相似文献   

20.
Wang X  Zhu C  Bao W  Zhao K  Niu J  Yu XF  Zhang W 《PloS one》2012,7(3):e32405
Human enterovirus 71 (EV71)-associated hand, foot, and mouth disease (HFMD) has been a leading cause of childhood infection in China since 2008. Epidemic and molecular characteristics of HFMD have been examined in many areas of China, including the central and southern regions. However, clinical and genetic characterization of EV71 in the northeastern region of China is scarce. In this study, a series of analyses were performed on seven full-length EV71 sequences from HFMD patients who had either severe or mild disease. We have determined that these seven circulating EV71 viruses from Changchun, China are actually complex recombinant viruses involving multiple type A human enterovirus (HEV). Classified as EV71 subtype C4 (EV71 C4), these Changchun EV71 viruses contain genetic recombination events between the CA4, CA5, EV71B4 and EV71C1 strains. Most of the structural protein region (P1) of these viruses resembled that of the prototype EV71 C1 strains. The non-structural protein domains (P2 and P3) showed a high degree of similarity with CA4, CA5 and EV71 B4 in different regions. The 5'UTR had unclassified recombination,while partial 3D region of these viruses showed a high degree of similarity to CA16. Phylogenetic analysis of full-length or partial sequences of isolates from severe or mild disease patients in Changchun always formed a single cluster in various phylogenetic analyses of different genomic regions, suggesting that all seven strains originated from one single common ancestor. There was no correlation between viral genomic sequence and virulence. Thus, we found that circulating recombinant forms of EV71 are prevalent among HFMD patients in Northeastern China. The existence of a unique cluster of EV71 related viruses in Northeast China has important implications for vaccine development that would address the increasing prevalence of HFMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号