首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The way we formulate a mathematical model of an infectious disease to capture symptomatic and asymptomatic transmission can greatly influence the likely effectiveness of vaccination in the presence of vaccine effect for preventing clinical illness. The present study aims to assess the impact of model building strategy on the epidemic threshold under vaccination.

Methodology/Principal Findings

We consider two different types of mathematical models, one based on observable variables including symptom onset and recovery from clinical illness (hereafter, the “observable model”) and the other based on unobservable information of infection event and infectiousness (the “unobservable model”). By imposing a number of modifying assumptions to the observable model, we let it mimic the unobservable model, identifying that the two models are fully consistent only when the incubation period is identical to the latent period and when there is no pre-symptomatic transmission. We also computed the reproduction numbers with and without vaccination, demonstrating that the data generating process of vaccine-induced reduction in symptomatic illness is consistent with the observable model only and examining how the effective reproduction number is differently calculated by two models.

Conclusions

To explicitly incorporate the vaccine effect in reducing the risk of symptomatic illness into the model, it is fruitful to employ a model that directly accounts for disease progression. More modeling studies based on observable epidemiological information are called for.  相似文献   

2.

Background

With approximately 2.5 billion people at risk, dengue is a major international public health concern. Dengue vaccines currently in development should help reduce the burden associated with this disease but the most efficient way of using future dengue vaccines remains to be defined. Mathematical models of transmission can provide insight into the expected impact of different vaccination strategies at a population level and contribute to this definition.

Methods and Findings

We developed and analyzed an age-structured, host-vector and serotype-specific compartmental model, including seasonality. We first used this transmission model to identify the immunological interactions between serotypes that affect the risks and consequences of secondary infections (cross-protection, increased susceptibility, increased severity, and increased infectiousness) and reproduce the observed epidemiology of dengue. For populating this model, we used routine surveillance data from Southern Vietnam and the results of a prospective cohort study conducted in the same area. The model provided a good fit to the observed data for age, severity of cases, serotype distribution, and dynamics over time, using two scenarios of immunological interaction : short term cross-protection alone (6–17 months) or a combination of short term cross-protection with cross-enhancement (increased susceptibility, severity and infectiousness in the case of secondary infections). Finally, we explored the potential impact of vaccination for these two scenarios. Both highlighted that vaccination can substantially decrease dengue burden by reducing the magnitude and frequency of outbreaks.

Conclusion

Our model suggests that seasonality and short term cross-protection are key factors for explaining dengue dynamics in Southern Vietnam. Vaccination was predicted to significantly reduce the disease burden, even in the situation where immunological cross-enhancement affects the risks and consequences of secondary infections.  相似文献   

3.

Background

All four serotypes of dengue virus are endemic in Indonesia, where the population at risk for infection exceeds 200 million people. Despite continuous control efforts that were initiated more than four decades ago, Indonesia still suffers from multi-annual cycles of dengue outbreak and dengue remains as a major public health problem. Dengue vaccines have been viewed as a promising solution for controlling dengue in Indonesia, but thus far its potential acceptability has not been assessed.

Methodology/Principal Findings

We conducted a household survey in the city of Bandung, Indonesia by administering a questionnaire to examine (i) acceptance of a hypothetical pediatric dengue vaccine; (ii) participant''s willingness-to-pay (WTP) for the vaccine, had it not been provided for free; and (iii) whether people think vector control would be unnecessary if the vaccine was available. A proportional odds model and an interval regression model were employed to identify determinants of acceptance and WTP, respectively. We demonstrated that out of 500 heads of household being interviewed, 94.2% would agree to vaccinate their children with the vaccine. Of all participants, 94.6% were willing to pay for the vaccine with a median WTP of US$1.94. In addition, 7.2% stated that vector control would not be necessary had there been a dengue vaccination program.

Conclusions/Significance

Our results suggest that future dengue vaccines can have a very high uptake even when delivered through the private market. This, however, can be influenced by vaccine characteristics and price. In addition, reduction in community vector control efforts may be observed following vaccine introduction but its potential impact in the transmission of dengue and other vector-borne diseases requires further study.  相似文献   

4.

Background

Dengue is a mosquito-borne infectious disease that constitutes a growing global threat with the habitat expansion of its vectors Aedes aegyti and A. albopictus and increasing urbanization. With no effective treatment and limited success of vector control, dengue vaccines constitute the best control measure for the foreseeable future. With four interacting dengue serotypes, the development of an effective vaccine has been a challenge. Several dengue vaccine candidates are currently being tested in clinical trials. Before the widespread introduction of a new dengue vaccine, one needs to consider how best to use limited supplies of vaccine given the complex dengue transmission dynamics and the immunological interaction among the four dengue serotypes.

Methodology/Principal Findings

We developed an individual-level (including both humans and mosquitoes), stochastic simulation model for dengue transmission and control in a semi-rural area in Thailand. We calibrated the model to dengue serotype-specific infection, illness and hospitalization data from Thailand. Our simulations show that a realistic roll-out plan, starting with young children then covering progressively older individuals in following seasons, could reduce local transmission of dengue to low levels. Simulations indicate that this strategy could avert about 7,700 uncomplicated dengue fever cases and 220 dengue hospitalizations per 100,000 people at risk over a ten-year period.

Conclusions/Significance

Vaccination will have an important role in controlling dengue. According to our modeling results, children should be prioritized to receive vaccine, but adults will also need to be vaccinated if one wants to reduce community-wide dengue transmission to low levels.  相似文献   

5.
YH Choi  M Jit  S Flasche  N Gay  E Miller 《PloS one》2012,7(7):e39927

Introduction

England and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7) with its 13-valent equivalent (PCV13), partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether.

Methods

A compartmental deterministic model was used to estimate parameters governing transmission of infection and competition between different groups of pneumococcal serotypes prior to the introduction of PCV13. The best-fitting parameters were used in an individual based model to describe pneumococcal transmission dynamics and effects of various options for the vaccination programme change in England and Wales. A number of scenarios were conducted using (i) different assumptions about the number of invasive pneumococcal disease cases adjusted for the increasing trend in disease incidence prior to PCV7 introduction in England and Wales, and (ii) a range of values representing serotype replacement induced by vaccination of the additional six serotypes in PCV13.

Results

Most of the scenarios considered suggest that ceasing pneumococcal conjugate vaccine use would cause an increase in invasive pneumococcal disease incidence, while replacing PCV7 with PCV13 would cause an overall decrease. However, the size of this reduction largely depends on the level of competition induced by the additional serotypes in PCV13. The model estimates that over 20 years of PCV13 vaccination, around 5000–62000 IPD cases could be prevented compared to stopping pneumococcal conjugate vaccination altogether.

Conclusion

Despite inevitable uncertainty around serotype replacement effects following introduction of PCV13, the model suggests a reduction in overall invasive pneumococcal disease incidence in all cases. Our results provide useful evidence on the benefits of PCV13 to countries replacing or considering replacing PCV7 with PCV13, as well as data that can be used to evaluate the cost-effectiveness of such a switch.  相似文献   

6.

Background

The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered deployment via the World Health Organization''s Expanded Programme on Immunization (EPI) in areas of stable endemic transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider uncertainties in model structure.

Methods and Findings

An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment, via EPI (with or without catch-up vaccinations), supplementary vaccination of school-age children, or mass vaccination every 5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs) of two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial catch-up phase) averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose, even at modest coverage.

Conclusions

In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants. The feasibility and economics of mass vaccination, and the circumstances under which vaccination will avert epidemics, remain unclear. The approach of using an ensemble of models provides more secure conclusions than a single-model approach, and suggests greater confidence in predictions of health effects for lower transmission settings than for higher ones. Please see later in the article for the Editors'' Summary  相似文献   

7.

Background

Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector''s survival during colder winter months will likely occur due to the effects of climate change.

Methods and Results

In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan.

Conclusion

Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs.  相似文献   

8.

Background

Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies.

Methods & Findings

We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1–14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies.

Conclusions

We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions.  相似文献   

9.

Background

Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations.

Methodology/Principal Findings

To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments.

Conclusions/Significance

This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.  相似文献   

10.
11.

Background

A. aegypti production and human density may vary considerably in dengue endemic areas. Understanding how interactions between these factors influence the risk of transmission could improve the effectiveness of the allocation of vector control resources. To evaluate the combined impacts of variation in A. aegypti production and human density we integrated field data with simulation modeling.

Methodology/Principal Findings

Using data from seven censuses of A. aegypti pupae (2007–2009) and from demographic surveys, we developed an agent-based transmission model of the dengue transmission cycle across houses in 16 dengue-endemic urban ‘patches’ (1–3 city blocks each) of Armenia, Colombia. Our field data showed that 92% of pupae concentrated in only 5% of houses, defined as super-producers. Average secondary infections (R0) depended on infrequent, but highly explosive transmission events. These super-spreading events occurred almost exclusively when the introduced infectious person infected mosquitoes that were produced in super-productive containers. Increased human density favored R0, and when the likelihood of human introduction of virus was incorporated into risk, a strong interaction arose between vector production and human density. Simulated intervention of super-productive containers was substantially more effective in reducing dengue risk at higher human densities.

Significance/Conclusions

These results show significant interactions between human population density and the natural regulatory pattern of A. aegypti in the dynamics of dengue transmission. The large epidemiological significance of super-productive containers suggests that they have the potential to influence dengue viral adaptation to mosquitoes. Human population density plays a major role in dengue transmission, due to its potential impact on human-A. aegypti contact, both within a person''s home and when visiting others. The large variation in population density within typical dengue endemic cities suggests that it should be a major consideration in dengue control policy.  相似文献   

12.

Background

Many vector-borne diseases co-circulate, as the viruses from the same family are also transmitted by the same vector species. For example, Zika and dengue viruses belong to the same Flavivirus family and are primarily transmitted by a common mosquito species Aedes aegypti. Zika outbreaks have also commonly occurred in dengue-endemic areas, and co-circulation and co-infection of both viruses have been reported. As recent immunological cross-reactivity studies have confirmed that convalescent plasma following dengue infection can enhance Zika infection, and as global efforts of developing dengue and Zika vaccines are intensified, it is important to examine whether and how vaccination against one disease in a large population may affect infection dynamics of another disease due to antibody-dependent enhancement.

Methods

Through a conceptual co-infection dynamics model parametrized by reported dengue and Zika epidemic and immunological cross-reactivity characteristics, we evaluate impact of a hypothetical dengue vaccination program on Zika infection dynamics in a single season when only one particular dengue serotype is involved.

Results

We show that an appropriately designed and optimized dengue vaccination program can not only help control the dengue spread but also, counter-intuitively, reduce Zika infections. We identify optimal dengue vaccination coverages for controlling dengue and simultaneously reducing Zika infections, as well as the critical coverages exceeding which dengue vaccination will increase Zika infections.

Conclusion

This study based on a conceptual model shows the promise of an integrative vector-borne disease control strategy involving optimal vaccination programs, in regions where different viruses or different serotypes of the same virus co-circulate, and convalescent plasma following infection from one virus (serotype) can enhance infection against another virus (serotype). The conceptual model provides a first step towards well-designed regional and global vector-borne disease immunization programs.
  相似文献   

13.

Introduction

Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus.

Methodology/Principal Findings

Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes.

Conclusions/Significance

Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.  相似文献   

14.

Background

The use of internet search data has been demonstrated to be effective at predicting influenza incidence. This approach may be more successful for dengue which has large variation in annual incidence and a more distinctive clinical presentation and mode of transmission.

Methods

We gathered freely-available dengue incidence data from Singapore (weekly incidence, 2004–2011) and Bangkok (monthly incidence, 2004–2011). Internet search data for the same period were downloaded from Google Insights for Search. Search terms were chosen to reflect three categories of dengue-related search: nomenclature, signs/symptoms, and treatment. We compared three models to predict incidence: a step-down linear regression, generalized boosted regression, and negative binomial regression. Logistic regression and Support Vector Machine (SVM) models were used to predict a binary outcome defined by whether dengue incidence exceeded a chosen threshold. Incidence prediction models were assessed using and Pearson correlation between predicted and observed dengue incidence. Logistic and SVM model performance were assessed by the area under the receiver operating characteristic curve. Models were validated using multiple cross-validation techniques.

Results

The linear model selected by AIC step-down was found to be superior to other models considered. In Bangkok, the model has an , and a correlation of 0.869 between fitted and observed. In Singapore, the model has an , and a correlation of 0.931. In both Singapore and Bangkok, SVM models outperformed logistic regression in predicting periods of high incidence. The AUC for the SVM models using the 75th percentile cutoff is 0.906 in Singapore and 0.960 in Bangkok.

Conclusions

Internet search terms predict incidence and periods of large incidence of dengue with high accuracy and may prove useful in areas with underdeveloped surveillance systems. The methods presented here use freely available data and analysis tools and can be readily adapted to other settings.  相似文献   

15.

Background

The genetic population structure of Aedes (Stegomyia) aegypti (L.), the main vector of dengue virus, is being investigated in areas where a novel dengue suppression program is to be implemented. The aim of the program is to release and establish mosquito populations with impaired virus transmission capabilities. To model effects of the release and devise protocols for its implementation, information about the genetic structure of populations at a range of spatial scales is required.

Methodology/Principal Findings

This study investigates a potential release site in the Hua Sam Rong Subdistrict of Plaeng Yao District, Chachoengsao Province, in eastern Thailand which comprises a complex of five villages within a 10 km radius. Aedes aegypti resting indoors was sampled at four different times of year from houses within the five villages. Genetic markers were used to screen the mosquitoes: two Exon Primed Intron Crossing (EPIC) markers and five microsatellite markers. The raw allele size was determined using several statistical software packages to analyze the population structure of the mosquito. Estimates of effective population size for each village were low, but there was no evidence of genetic isolation by geographic distance.

Conclusions

The presence of temporary genetic structure is possibly caused by genetic drift due to large contributions of adults from a few breeding containers. This suggests that the introduction of mosquitoes into an area needs to proceed through multiple releases and targeting of sites where mosquitoes are emerging in large numbers.  相似文献   

16.

Background

Dengue infection is endemic in many regions throughout the world. While insecticide fogging targeting the vector mosquito Aedes aegypti is a major control measure against dengue epidemics, the impact of this method remains controversial. A previous mathematical simulation study indicated that insecticide fogging minimized cases when conducted soon after peak disease prevalence, although the impact was minimal, possibly because seasonality and population immunity were not considered. Periodic outbreak patterns are also highly influenced by seasonal climatic conditions. Thus, these factors are important considerations when assessing the effect of vector control against dengue. We used mathematical simulations to identify the appropriate timing of insecticide fogging, considering seasonal change of vector populations, and to evaluate its impact on reducing dengue cases with various levels of transmission intensity.

Methodology/Principal Findings

We created the Susceptible-Exposed-Infectious-Recovered (SEIR) model of dengue virus transmission. Mosquito lifespan was assumed to change seasonally and the optimal timing of insecticide fogging to minimize dengue incidence under various lengths of the wet season was investigated. We also assessed whether insecticide fogging was equally effective at higher and lower endemic levels by running simulations over a 500-year period with various transmission intensities to produce an endemic state. In contrast to the previous study, the optimal application of insecticide fogging was between the onset of the wet season and the prevalence peak. Although it has less impact in areas that have higher endemicity and longer wet seasons, insecticide fogging can prevent a considerable number of dengue cases if applied at the optimal time.

Conclusions/Significance

The optimal timing of insecticide fogging and its impact on reducing dengue cases were greatly influenced by seasonality and the level of transmission intensity. We suggest that these factors should be considered when planning a control strategy against dengue vectors.  相似文献   

17.

Background

Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk.

Methods and Findings

We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km2 prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks.

Conclusions

Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors'' Summary  相似文献   

18.

Background

This year, Brazil will host about 600,000 foreign visitors during the 2014 FIFA World Cup. The concern of possible dengue transmission during this event has been raised given the high transmission rates reported in the past by this country.

Methodology/Principal Findings

We used dengue incidence rates reported by each host city during previous years (2001–2013) to estimate the risk of dengue during the World Cup for tourists and teams. Two statistical models were used: a percentile rank (PR) and an Empirical Bayes (EB) model. Expected IR''s during the games were generally low (<10/100,000) but predictions varied across locations and between models. Based on current ticket allocations, the mean number of expected symptomatic dengue cases ranged from 26 (PR, 10th–100th percentile: 5–334 cases) to 59 (EB, 95% credible interval: 30–77 cases) among foreign tourists but none are expected among teams. These numbers will highly depend on actual travel schedules and dengue immunity among visitors. Sensitivity analysis for both models indicated that the expected number of cases could be as low as 4 or 5 with 100,000 visitors and as high as 38 or 70 with 800,000 visitors (PR and EB, respectively).

Conclusion/Significance

The risk of dengue among tourists during the World Cup is expected to be small due to immunity among the Brazil host population provided by last year''s epidemic with the same DENV serotypes. Quantitative risk estimates by different groups and methodologies should be made routinely for mass gathering events.  相似文献   

19.

Background

Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles.

Methodology and principal findings

We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces.

Conclusion and significance

High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control.  相似文献   

20.

Background

Aedes aegypti and Aedes albopictus perform an important role in the transmission of the dengue virus to human populations, particularly in the tropical and subtropical regions of the world. Despite a lack of understanding in relation to the maintenance of the dengue virus in nature during interepidemic periods, the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus appears to be of significance in relation to the urban scenario of Fortaleza.

Methods

From March 2007 to July 2009 collections of larvae and pupae of Aedes spp were carried out in 40 neighborhoods of Fortaleza. The collections yielded 3,417 (91%) A. aegypti mosquitoes and 336 (9%) A. albopictus mosquitoes. Only pools containing females, randomly chosen, were submitted to the following tests indirect immunofluorescence (virus isolation), RT-PCR/nested-PCR and nucleotide sequencing at the C-prM junction of the dengue virus genome.

Results

The tests on pool 34 (35 A. albopictus mosquitoes) revealed with presence of DENV-3, pool 35 (50 A. aegypti mosquitoes) was found to be infected with DENV-2, while pool 49 (41 A. albopictus mosquitoes) revealed the simultaneous presence of DENV-2 and DENV-3. Based on the results obtained, there was a minimum infection rate of 0.5 for A. aegypti and 9.4 for A. albopictus. The fragments of 192 bp and 152 bp related to DENV-3, obtained from pools 34 and 49, was registered in GenBank with the access codes HM130699 and JF261696, respectively.

Conclusions

This study recorded the first natural evidence of the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus collected in Fortaleza, Ceará State, Brazil, opening a discuss on the epidemiological significance of this mechanism of viral transmission in the local scenario, particularly with respect to the maintenance of these viruses in nature during interepidemic periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号