首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The innate immune system protects cells against invading viral pathogens by the auto- and paracrine action of type I interferon (IFN). In addition, the interferon regulatory factor (IRF)-1 can induce alternative intrinsic antiviral responses. Although both, type I IFN and IRF-1 mediate their antiviral action by inducing overlapping subsets of IFN stimulated genes, the functional role of this alternative antiviral action of IRF-1 in context of viral infections in vivo remains unknown. Here, we report that IRF-1 is essential to counteract the neuropathology of vesicular stomatitis virus (VSV). IFN- and IRF-1-dependent antiviral responses act sequentially to create a layered antiviral protection program against VSV infections. Upon intranasal infection, VSV is cleared in the presence or absence of IRF-1 in peripheral organs, but IRF-1−/− mice continue to propagate the virus in the brain and succumb. Although rapid IFN induction leads to a decline in VSV titers early on, viral replication is re-enforced in the brains of IRF-1−/− mice. While IFN provides short-term protection, IRF-1 is induced with delayed kinetics and controls viral replication at later stages of infection. IRF-1 has no influence on viral entry but inhibits viral replication in neurons and viral spread through the CNS, which leads to fatal inflammatory responses in the CNS. These data support a temporal, non-redundant antiviral function of type I IFN and IRF-1, the latter playing a crucial role in late time points of VSV infection in the brain.  相似文献   

3.
Type I interferons (IFN) comprise a family of cytokines that signal through a common cellular receptor to induce a plethora of genes with antiviral and other activities. Recombinant IFNs are used for the treatment of hepatitis C virus infection, multiple sclerosis, and certain malignancies. The capability of type I IFN to suppress virus replication and resultant cytopathic effects is frequently used to measure their bioactivity. However, these assays are time-consuming and require appropriate biosafety containment. In this study, an improved IFN assay is presented which is based on a recombinant vesicular stomatitis virus (VSV) replicon encoding two reporter proteins, firefly luciferase and green fluorescent protein. The vector lacks the essential envelope glycoprotein (G) gene of VSV and is propagated on a G protein-expressing transgenic cell line. Several mammalian and avian cells turned out to be susceptible to infection with the complemented replicon particles. Infected cells readily expressed the reporter proteins at high levels five hours post infection. When human fibroblasts were treated with serial dilutions of human IFN-β prior to infection, reporter expression was accordingly suppressed. This method was more sensitive and faster than a classical IFN bioassay based on VSV cytopathic effects. In addition, the antiviral activity of human IFN-λ (interleukin-29), a type III IFN, was determined on Calu-3 cells. Both IFN-β and IFN-λ were acid-stable, but only IFN-β was resistant to alkaline treatment. The antiviral activities of canine, porcine, and avian type I IFN were analysed with cell lines derived from the corresponding species. This safe bioassay will be useful for the rapid and sensitive quantification of multi-species type I IFN and potentially other antiviral cytokines.  相似文献   

4.
5.
The effects of double-stranded RNA (dsRNA) on interferon (IFN)-induced antiviral and anticellular activities was investigated by introducing poly(I)-poly(C) into mouse L-cells. Coprecipitation of dsRNA with calcium phosphate enabled its efficient penetration into cells in culture. Rate of cellular protein synthesis was inhibited by dsRNA only in cultures pretreated with IFN. Moreover, the anticellular effect of IFN, as measured by the inhibition of cell DNA synthesis, was also enhanced by dsRNA. The kinetics of dsRNA-mediated inhibition of protein synthesis were relatively slow as compared with the inhibitory effect of 2'-5' oligoadenylic acid (2'5'A), which was also introduced into cells by the calcium phosphate coprecipitation technique. To analyze the effects of dsRNA on the antiviral state induced by IFN, vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMC), replications were followed by measuring viral-specific RNA synthesis in the cell. Introduction of dsRNA after the infection had no effect on VSV and EMC replication in control cells, and it enhanced, to a small extent, the antiviral state of cells pretreated with IFN. In contrast, introduction of 2'5'A into virus-infected cells inhibited VSV and EMC replications regardless of IFN pretreatment. This work demonstrated that the role of dsRNA in regulating the antiviral and anticellular activities of IFN could be studied by introducing exogenous dsRNA into cells in culture by the calcium phosphate coprecipitation technique.  相似文献   

6.
Cyclopentenone prostaglandins (PGs) exhibit antiviral activity against RNA and DNA viruses in mammalian cell lines, and this effect has been associated with the induction of a heat shock protein (hsp70). We investigated the effect of prostaglandin A1 (PGA1) on the replication of vesicular stomatitis virus (VSV) in Aedes albopictus (mosquito) cells. PGA1 was found to inhibit VSV replication dose dependently. Virus yield was reduced to 50% (3 microg PGA1/ml) and to 95% with 8 microg PGA1/ml. Even with the dramatic reduction of virus production observed in cells treated with PGA1, VSV-specific protein synthesis was unaltered. Treatment of cells with PGA1 (5 microg/ml) stimulated the synthesis of a polypeptide identified as a heat-shock protein (hsp) by immunoblot analysis. PGA1 induced hsp70 synthesis in uninfected cells. However, in VSV-infected cells the induction of hsp70 by PGA1 was reduced. This is the first report of antiviral effects of PGs affecting the replication of VSV in a mosquito cell line.  相似文献   

7.
8.
Epstein-Barr virus (EBV) infection is associated with several human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. In this report, we show that LMP-1 is able to induce the expression of several interferon (IFN)-stimulated genes (ISGs) with antiviral properties such as 2'-5' oligoadenylate synthetase (OAS), stimulated trans-acting factor of 50 kDa (STAF-50), and ISG-15. LMP-1 inhibits vesicular stomatitis virus (VSV) replication at low multiplicity of infection (0.1 pfu/cell). The antiviral effect of LMP-1 is associated with the ability of LMP-1 to induce ISGs; an LMP-1 mutant that cannot induce ISGs fails to induce an antiviral state. High levels of ISGs are expressed in EBV latency cells in which LMP-1 is expressed. EBV latency cells have antiviral activity that inhibits replication of superinfecting VSV. The antiviral activity of LMP-1 is apparently not related to IFN production in our experimental systems. In addition, EBV latency is responsive to viral superinfection: LMP-1 is induced and EBV latency is disrupted by EBV lytic replication during VSV superinfection of EBV latency cells. These data suggest that LMP-1 has antiviral effect, which may be an intrinsic part of EBV latency program to assist the establishment and/or maintenance of EBV latency.  相似文献   

9.
10.
The cytotoxic effect of lymphotoxin (LT) and its modulation by interferon (IFN) was quantitatively assessed in uninfected and vesicular stomatitis virus (VSV)-infected cultured cells. Preparations of human LT, which were depleted of IFN, had a significant cytotoxic effect on VSV-infected HeLa, SV-80, WISH, and Vero cells. IFN, most notably IFN-gamma, further potentiated destruction of the infected cells by these LT preparations, when applied on the cells at sub-antiviral IFN concentrations. In contrast, no cytotoxic effect could be observed in any of the examined cells, when applying LT, IFN, or their combination, in the absence of viral infection. Infected cells in which VSV replication was suppressed by treatment with antiviral concentrations of IFN also resisted destruction by LT. These findings indicate that LT cytotoxicity can be selectively directed against virus-infected cells and that IFN can augment this cell-killing mechanism when failing to exert an antiviral effect.  相似文献   

11.
There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon.  相似文献   

12.
Interferon (IFN) is one of the molecules released by virus-infected cells, resulting in the establishment of an antiviral state within infected and neighboring cells. IFN-induced antiviral response may be subject to modulation by the cellular signaling environment of host cells which impact the effectiveness of viral replication. Here, we show that cells with an activated Ras/Raf/MEK signaling cascade allow propagation of viruses in the presence of IFN. Ras-transformed (RasV12) and vector control NIH 3T3 cells were infected with vesicular stomatitis virus (VSV) or an IFN-sensitive vaccinia virus (delE3L) in the presence of alpha interferon. While IFN protected vector control cells from infection by both viruses, RasV12 cells were susceptible to viral infection regardless of the presence of IFN. IFN sensitivity was restored in RasV12 cells upon RNA interference (RNAi) knockdown of Ras. We further investigated which elements downstream of Ras are responsible for counteracting IFN-induced antiviral responses. A Ras effector domain mutant that can only stimulate the Raf kinase family of effectors was able to suppress the IFN response and allow VSV replication. IFN-induced antiviral mechanisms were also restored in RasV12 cells by treatment with a MEK inhibitor (U0126 or PD98059). Moreover, by using RNAi to MEK1 and MEK2, we determined that MEK2, rather than MEK1, is responsible for suppression of the IFN response. In conclusion, our results suggest that activation of the Ras/Raf/MEK pathway downregulates IFN-induced antiviral response.  相似文献   

13.
Type III IFNs (IFN-lambda/IL-28/29) are cytokines with type I IFN-like antiviral activities, which remain poorly characterized. We herein show that most cell types expressed both types I and III IFNs after TLR stimulation or virus infection, whereas the ability of cells to respond to IFN-lambda was restricted to a narrow subset of cells, including plasmacytoid dendritic cells and epithelial cells. To examine the role of type III IFN in antiviral defense, we generated IL-28Ralpha-deficient mice. These mice were indistinguishable from wild-type mice with respect to clearance of a panel of different viruses, whereas mice lacking the type I IFN receptor (IFNAR(-/-)) were significantly impaired. However, the strong antiviral activity evoked by treatment of mice with TLR3 or TLR9 agonists was significantly reduced in both IL-28RA(-/-) and IFNAR(-/-) mice. The type I IFN receptor system has been shown to mediate positive feedback on IFN-alphabeta expression, and we found that the type I IFN receptor system also mediates positive feedback on IFN-lambda expression, whereas IL-28Ralpha signaling does not provide feedback on either type I or type III IFN expression in vivo. Finally, using bone-marrow chimeric mice we showed that TLR-activated antiviral defense requires expression of IL-28Ralpha only on nonhemopoietic cells. In this compartment, epithelial cells responded to IFN-lambda and directly restricted virus replication. Our data suggest type III IFN to target a specific subset of cells and to contribute to the antiviral response evoked by TLRs.  相似文献   

14.
Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner.  相似文献   

15.
Mitogen-activated protein kinase (MAP) cascades are important in antiviral immunity through their regulation of interferon (IFN) production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8) has been implicated as a key regulator of Type I (IFNα/β) and Type II (IFNγ) IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs). Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.  相似文献   

16.
As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats.  相似文献   

17.
Vesicular stomatitis virus (VSV) is an essentially nonpathogenic negative-stranded RNA virus, the replication of which is extremely sensitive to the antiviral effects of interferon (IFN). We demonstrate here that VSV selectively induces the cytolysis of numerous transformed human cell lines in vitro, with all the morphological characteristics of apoptotic cell death. Importantly, VSV can also potently inhibit the growth of p53-null C6 glioblastoma tumors in vivo without infecting and replicating in normal tissue. With our previous findings demonstrating that primary cells containing the double-stranded RNA-activated protein kinase PKR and a functional IFN system are not permissive to VSV replication, these results suggest that signaling by IFN may be defective in many malignancies. Thus VSV might be useful in novel therapeutic strategies for targeting neoplastic disease.  相似文献   

18.
Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation.  相似文献   

19.
We have studied the relationship between the Sendai virus (SeV) C proteins (a nested set of four proteins initiated at different start codons) and the interferon (IFN)-mediated antiviral response in IFN-competent cells in culture. SeV strains containing wild-type or various mutant C proteins were examined for their ability (i) to induce an antiviral state (i.e., to prevent the growth of vesicular stomatitis virus [VSV] following a period of SeV infection), (ii) to induce the elevation of Stat1 protein levels, and (iii) to prevent IFN added concomitant with the SeV infection from inducing an antiviral state. We find that expression of the wild-type C gene and, specifically, the AUG114-initiated C protein prevents the establishment of an antiviral state: i.e., cells infected with wild-type SeV exhibited little or no increase in Stat1 levels and were permissive for VSV replication, even in the presence of exogenous IFN. In contrast, in cells infected with SeV lacking the AUG114-initiated C protein or containing a single amino acid substitution in the C protein, the level of Stat1 increased and VSV replication was inhibited. The prevention of the cellular IFN-mediated antiviral response appears to be a key determinant of SeV pathogenicity.  相似文献   

20.
Luker GD  Prior JL  Song J  Pica CM  Leib DA 《Journal of virology》2003,77(20):11082-11093
Herpes simplex virus type 1 (HSV-1) can produce disseminated, systemic infection in neonates and patients with AIDS or other immunocompromising diseases, resulting in significant morbidity and mortality in spite of antiviral therapy. Components of host immunity that normally limit HSV-1 to localized epithelial and neuronal infection remain incompletely defined. We used in vivo bioluminescence imaging to determine effects of type I and II interferons (IFNs) on replication and tropism of HSV-1 infection in mice with genetic deficiency of type I, type II, or both type I and II IFN receptors. Following footpad or ocular infection of mice lacking type I IFN receptors, HSV-1 spread to parenchymal organs, including lung, liver, spleen, and regional lymph nodes, but mice survived. Deletion of type I and II IFN receptors produced quantitatively greatest and most widespread dissemination of virus to visceral organs and the nervous system, and these mice invariably died after ocular or footpad infection. Type II receptor knockout and wild-type mice had comparable viral replication and localization, with no systemic spread of HSV-1 or lethality. Therefore, while isolated deficiency of type II IFN receptors did not affect pathogenesis, loss of these receptors in combination with genetic deletion of type I receptors had a profound effect on susceptibility to HSV-1. These data demonstrate different effects of type I and II IFNs in limiting systemic dissemination of HSV-1 and further validate the use of bioluminescence imaging for studies of viral pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号