首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle.  相似文献   

2.
In previous studies plant feeding behavior of plant- and non-plant feeding phytoseiids was never examined directly. Moreover, in these studies the cheliceral morphology of phytoseiids was not associated with their ability to feed on plants. In the present study, we monitored the plant-feeding behavior of Euseius scutalis and Amblyseius swirskii. Only E. scutalis was observed penetrating the leaf surface with the movable digit and feeding. Second, using a dye and coloring the gut as an indicator for feeding, we found that E. scutalis pierced an artificial membrane and fed whereas A. swirskii did not. Finally, to identify morphological characteristics typical of plant feeders versus non-plant feeders, we used scanning electron microscopy to examine the adaxial (inner) profile of the chelicerae in 13 phytoseiid species. The only parameter that distinguished between plant- and non-plant feeders was the ratio of the dorsal perimeter length of the fixed digit to the ventral perimeter length of the movable digit. Plant-feeders were characterized by ratio values greater than one whereas the values for non plant-feeders were lower than one. We suggest that a shorter and less curved movable digit, expressed by a high ratio, will facilitate the penetration of the leaf surface. Cheliceral traits proposed here as typical of plant feeders, were observed for five genera, indicating that plant-feeding may be more common in the Phytoseiidae than previously reported. We propose that the ability to feed on plants be added as a cross type trait of phytoseiid life-style types.  相似文献   

3.
EVOLUTION OF THE TELLINACEA (BIVALVIA)   总被引:1,自引:0,他引:1  
The suspension feeding Astartacea appear to be among the earliestheterodonts. These organisms may have given rise to the Carditaceaand the rest of the heterodonts including the Tellinacea. Paleontological evidence indicates that the earliest Tellinaceawere suspension feeders with members that lived vertically ina burrow in shifting sand. These conditions resemble those foundin species of modern Donax in the Donacidae. From a Donax-likestate of suspension feeding evolution most likely proceededto non-selective feeders. Extant organisms that resemble thisstage are found in the Solecurtidae. A later stage resemblessome of the extant Psammobiidae. The final stage in tellinaceanevolution is the acquisition of deposit feeding with its associatedmorphology. These stages are observed in the Scrobiculariidae,Tellinidae and a few members of the Semelidae. (Received 27 April 1981;  相似文献   

4.
We compared the community structure of reef fish over different physical complexities in 12 study zones of Bahía Honda, Gulf of Chiriquí (BH-GCH), Tropical Eastern Pacific (TEP), Panama, aiming at an analysis of the importance of the physical structure provided by corals, rocks and benthic sessile organisms. This was the first region that emerged in the Isthmus of Panama; it exhibits the oldest benthic fauna and has constant conditions in terms of temperature and salinity. Two hundred and eighty-eight visual fish censuses were conducted on 48 benthic transects from February to July 2003. One hundred and twenty-six fish species of 44 families were found. Plankton feeding pomacentrids and labrids along with haemulids that feed on mobile invertebrates were the most abundant, particularly in shallow areas. Fourteen species showed size-segregations between zones, suggesting ontogenetic migrations (smaller fishes in shallow high-complexity zones, larger-sized fishes in deeper habitats). Highly mobile and site-attached genera were abundant in most shallow, wave-exposed zones particularly on exposed rocky substrates. Planktivores were the most abundant, followed by carnivores, feeders on mobile invertebrate and piscivores. Herbivores and feeders on sessile invertebrate were lower in abundance. Species richness exceeds that of any other studied region close to the mainland in the TEP and correlates with substrate diversity, increasing size-heterogeneity of holes and structural complexity. Species diversity increases with habitat complexity and benthic diversity. It seems that water current strength, tides and waves which select for swimming, play an important role in the community organization. The study region has been proposed as a refuge-centre in the TEP, where reef fishes that evolved on coral reefs have shifted their distribution onto rocky reef habitats.  相似文献   

5.
Sponges are the most basal metazoan organisms. As sessile filter feeders in marine or freshwater habitats, they often live in close association with phototrophic microorganisms. Active photosynthesis by the associated microorganisms has been believed to be restricted to the outer tissue portion of the sponge hosts. However, phototrophic microorganisms have also been detected in deeper tissue regions. In many cases they are found around spicules, siliceous skelettal elements of demosponges and hexactinellids. The finding of phototrophic organisms seemingly assembled around spicules led to the hypothesis of a siliceous light transmission system in sponges. The principle ability to conduct light was already shown for sponge derived, explanted spicules. However it was not shown until now, that in deed sponges have a light transmission system, and can harbour photosynthetically active microorganisms in deeper tissue regions.Here we show for the first time, that, as hypothesized 13 year ago, sponge spicules in living specimens transmit light into deeper tissue regions. Our results demonstrate that in opposite to the actual opinion, photosynthetically active microorganisms can also live in deeper tissue regions, and not only directly beneath the surface, when a light transmission system (spicules) is present.Our results show the possibility of massive or globular sponges being supplied with photosynthetic products or pathways throughout their whole body, implying not only a more important role of these endobioses. Our findings also elucidate the in-situ function of a recently more and more interesting biomaterial, which is unique not only for its mechanical, electrical and optical properties. Biosilica is of special interest for the possibility to produce it enzymatically under environmental conditions.  相似文献   

6.
Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae) and by the nauplii of one feeding-current feeding species (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey.  相似文献   

7.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics.  相似文献   

8.
Zooplankton feed in any of three ways: they generate a feeding current while hovering, cruise through the water or are ambush feeders. Each mode generates different hydrodynamic disturbances and hence exposes the grazers differently to mechanosensory predators. Ambush feeders sink slowly and therefore perform occasional upward repositioning jumps. We quantified the fluid disturbance generated by repositioning jumps in a millimetre-sized copepod (Re ∼ 40). The kick of the swimming legs generates a viscous vortex ring in the wake; another ring of similar intensity but opposite rotation is formed around the decelerating copepod. A simple analytical model, that of an impulsive point force, properly describes the observed flow field as a function of the momentum of the copepod, including the translation of the vortex and its spatial extension and temporal decay. We show that the time-averaged fluid signal and the consequent predation risk is much less for an ambush-feeding than a cruising or hovering copepod for small individuals, while the reverse is true for individuals larger than about 1 mm. This makes inefficient ambush feeding feasible in small copepods, and is consistent with the observation that ambush-feeding copepods in the ocean are all small, while larger species invariably use hovering or cruising feeding strategies.  相似文献   

9.
Summary We tested whether larval black flies actively control the positioning of their feeding appendages (labral fans), and if so, whether their posture represents a balance between the conflicting demands of drag and feeding. We compared the postures of live larvae with the postures of larvae killed by heat-shock in three different flow regimes in a laboratory experiment; we assumed that the postures of heat-killed larvae approximated a passive response to drag. The average height of the labral fans above the bed declined significantly in faster flows, and was significantly greater in live than dead larvae. There was also a significant interaction effect, since the difference between the fan heights of live and dead larvae was greater in slower flows. Two mechanisms may contribute to this result. Larvae in slower flows have to increase their fan heights more than larvae living in faster flows to achieve comparable increases in velocity and thus particle flux. In addition, muscular strength may limit the feeding postures larvae can assume. The fan heights of live larvae also varied depending on the concentration of food particles: larvae exposed to low food concentrations held their fans higher above the bed than did larvae exposed to high food concentrations in the same flow regime. This change in posture is due neither to an uneven particle concentration in the boundary layer nor to added drag from particles trapped in the labral fans. Collectively, our results indicate that these suspension feeders actively control their feeding posture, and suggest that these varying postures represent a dynamic balance between the conflicting needs of minimizing drag and maximizing feeding.  相似文献   

10.
Maerl beds are highly biodiverse biogenic substrata that have been receiving increasing attention in the last decade. Although maerl beds represent important nursery areas for commercial fishes and molluscs, little is known on the trophic web of their communities. Community structure parameters of maerl bed of the Bay of Brest (species richness, abundance, biomass and dominating species) were studied in parallel with the carbon and nitrogen isotopic composition of their main benthic species (macrofaunal, and megafaunal organisms) in order to assess the trophic levels and differences in the potential food sources of maerl inhabitants. The major potential sources of energy were identified to originate either from epiphytic macroalgae and microphytobenthos both growing on maerl thalli, together with sedimenting (sedimentary) particulate organic matter (POM) originating from the water column. The majority of the macro- and megafaunal organisms investigated were filter feeders, selective-deposit feeders and predators/scavengers. Filter feeders fall into three different groups representing different trophic pathways (i) sponges feeding directly on POM (water column filter feeders I), (ii) ascidians and holothurians feeding on POM and probably captured pelagic preys (water column filter feeders II), and (iii) filter feeding molluscs and crustaceans were hypothesised to feed on microphytobenthos or on decaying sedimented POM (Interface filter feeders). Selective deposit feeders were also divided into two subgroups. Carnivores were also distinguished between those with scavenging habits and true predators. Coupling of the trophic levels observed with the community biomass structure revealed that most of the benthic biomass derives its food from detritic sedimented POM and/or microphytobenthos, with interface filter feeders (23% of the biomass), selective deposit feeders (12%). Carnivores made up to 14% of the total biomass. Generally stable isotopes ratio mean values overlap and cover a large range within feeding types, indicating a strong overlap in food sources and a high degree of complexity of the food web presumably due to the diversity of the potential food sources.  相似文献   

11.
Larvae of the South African clawed frog, Xenopus laevis (Daudin), are efficient, obligate suspension feeders. We examine the relationship between the ambient particle concentration offered these larvae as food and their filtering, ingestion, and buccal pumping rates. We demonstrate that: (i) the larvae can sense and respond to a broad range of particle concentrations, down to 0.2 mg 1–1 (dry weight); (ii) their metabolic needs theoretically can be met by particle concentrations as low as 5 mg 1–1; and (iii) their patterns of regulation of filtering and ingestion fit predictions from certain models used to describe zooplankton feeding dynamics. Two such models are discussed: the modified Monod (Michaelis-Menten) model, with a lower threshold below which the tadpoles do not feed, and an energy optimization model. Both the models and the observed behavior of the tadpoles allow for stability of populations of food organisms. Tadpole feeding dynamics apparently are compatible with both the predictions and assumptions of these models, suggesting similar regulation of feeding by tadpoles and zooplankton. However, the size, morphology, and behavior of X. laevis larvae make their feeding regulation uniquely accessible to direct observation.Contribution No. 223, Center for Great Lakes Studies, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.Contribution No. 223, Center for Great Lakes Studies, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.  相似文献   

12.
The trade-off between parents feeding themselves and their young is an important life history problem that can be considered in terms of optimal behavioral strategies. Recent studies on birds have tested how parents allocate the food between themselves and their young. Until now the effect of food consumption by parent birds on their food delivery to their young as well as other parental activities has rarely been studied. I have previously shown that parent Palestine sunbirds (Nectarinia osea) will consume nectar and liquidized arthropods from artificial feeders. However, they will only feed their young with whole arthropods. This provided a unique opportunity to experimentally manipulate the food eaten by parents independent of that fed to their offspring. Here, I hypothesized that parents invest in their current young according to the quality of food that they themselves consume. Breeding pairs with two or three nestlings were provided with feeders containing water (control), sucrose solution (0.75 mol) or liquidized mealworms mixed with sucrose solution (0.75 mol). As food quality in feeders increased (from water up to liquidized mealworms mixed with sucrose solution): 1) Parents (especially females) increased their food delivery of whole arthropod prey to their young. 2) Only males increased their nest guarding effort. Nestling food intake and growth rate increased with increasing food quality of parents and decreasing brood size. These results imply that increasing the nutrient content of foods consumed by parent sunbirds allow them to increase the rate at which other foods are delivered to their young and to increase the time spent on other parental care activities.  相似文献   

13.
Herbivorous insects that have evolved to feed on senescing tissues of plants, or the phloem flowing from those tissues, comprise a distinct sub‐guild of the major trophic guilds, the senescence‐feeders. Some senescence‐feeders have evolved the capacity to accelerate the rate at which the tissues they feed on senesce, thus enhancing the quantity and quality of their food. Other species prolong their access to good food by feeding alternatively on both senescing and flushing tissues. Senescing plant tissues release a poorer quality food more slowly than the rapid inflow to new growth. As a result, senescence‐feeders grow more slowly than equivalent flush‐feeders. Any environmental stress of a plant that hastens its rate of senescence results in faster growth and higher survival of senescence‐feeders. Senescence‐feeders therefore succeed best on damaged or stressed plants and frequently reach outbreak levels on drought‐stressed trees. If the distinctive ecology of senescence‐feeders and the way in which they differ from flush‐feeders in their response to the condition of their host plants are to be recognized and understood, it is important to identify species that belong to this separate trophic sub‐guild. Such understanding is also necessary if attempts to control or manage their attacks on crops and forests are to succeed.  相似文献   

14.
We provide an example of extensive facilitation of a sessile community throughout an invaded estuary by the invasive snail Batillaria australis. We show that B. australis greatly increases a limiting resource (attachment space) to a community of sessile organisms and estimate that a large part of the invaded estuary now contain ca. 50 times more sessile individuals associated with the invader than all native snails combined. We argue that native snails are unlikely to have been dramatically reduced by the invader, and we therefore suggest that the shell-attached sessile community, as a functional group, has benefitted significantly from this invasion. These results expand the current understanding of how invaded marine systems respond to habitat-forming invaders.  相似文献   

15.
Slipper limpets use different ciliary feeding mechanisms as larvae and adults. Veliger larvae of Crepidula fornicata developed part of the adult feeding apparatus, including ctenidial filaments, neck lobe, and radula, before metamorphosis, but ctenidial feeding did not begin until well after loss of the larval feeding apparatus (velum) at metamorphosis. Earlier initiation of ctenidial feeding by individuals that were older larvae when metamorphosis occurred suggests continued development toward ctenidial feeding during delay of metamorphosis. Early juveniles produced a ciliary current through the mantle cavity and moved the radula in a grasping action before they began to capture algal cells on mucous strands or form a food cord. Either early juveniles could not yet form mucous strands or they delayed their production until development of other necessary structures. The neck canal for transporting food from ctenidium to mouth cannot develop before velar loss. In their first feeding, juveniles fed much like the adults except that the neck canal was less developed and the path of the food cord toward the mouth sometimes varied. As suspension feeders, calyptraeids lack the elaborations of foregut that complicate transition to juvenile feeding for many caenogastropods, but a path for the food cord must develop after velar loss. Why individuals can initiate ctenidial feeding sooner when they are older at metamorphosis is not yet known. The juveniles became sedentary soon after metamorphosis and were not observed to feed by scraping the substratum with the radula, in contrast to the first feeding by juveniles of another calyptraeid species, observed by Montiel et al. ( 2005 ).  相似文献   

16.
Sponges (Porifera) are aquatic, sessile filter feeders. As such they are permanently exposed to bacteria in the seawater. Molecular data recovered from sponges by PCR shows a high diversity in bacterial DNA. Hence, sponges are considered to live in close association with a diverse and abundant bacterial community. To recover the spatial distribution of bacteria in sponges we retrieved histological sections of Aplysina aerophoba fixed in situ. By combining signals from fluorescence in situ hybridization (FISH), light microscopy and scanning electron microscopy we revealed a detailed histological picture of the spatial organization of the sponge microbial association within the sponges. Our histological results confirm a high abundance of cyanobacteria inside A. aerophoba while other living bacteria are almost absent. This detailed insight into sponge microbiology could only be achieved by the combination of careful sample preparation and different microscopical and histological methods. It also shows the need to confirm molecular datasets in situ and with a high spatial resolution.  相似文献   

17.
Plant chemical defenses can negatively affect insect herbivore fitness, but they can also decrease herbivore palatability to predators or decrease parasitoid fitness, potentially changing selective pressures on both plant investment in production of chemical defenses and host feeding behavior. Larvae of the fern moth Herpetogramma theseusalis live in and feed upon leaf shelters of their own construction, and their most abundant parasitoid Alabagrus texanus oviposits in early instar larvae, where parasitoid larvae lay dormant for most of host development before rapidly developing and emerging just prior to host pupation. As such, both might be expected to live in a relatively constant chemical environment. Instead, we find that a correlated set of phenolic compounds shows strong seasonal variation both within shelters and in undamaged fern tissue, and the relative level of these compounds in these two different fern tissue types switches across the summer. Using experimental feeding treatments, in which we exposed fern moth larvae to different chemical trajectories across their development, we show that exposure to this set of phenolic compounds reduces the survival of larvae in early development. However, exposure to this set of compounds just before the beginning of explosive parasitoid growth increased parasitoid survival. Exposure during the period of rapid parasitoid growth and feeding decreased parasitoid survival. These results highlight the spatial and temporal complexity of leaf shelter chemistry, and demonstrate the developmental contingency of associated effects on both host and parasitoid, implying the existence of complex selective pressures on plant investment in chemical defenses, host feeding behavior, and parasitoid life history.  相似文献   

18.
The high-energy black sand beaches around the island of Tahiti show low species richness. Most of the individuals collected in the swash zone belong to two recently described species of polychaete Scolelepis sp. A, and Scolelepis sp. B (Spionidae). Densities of the first species can reach up to 1900 individuals.m−2 and biomasses up to 47.5 g dry weight (gD.W.).m−2. These high densities and biomasses occur because of their adaptation to this high-energy habitat, where they are restricted to the swash zone on the beach. Scolelepis sp. A appears to be a suspension feeder and feeding occurs only as the wave recedes. This suggests that the species is highly efficient at obtaining nutrients in this oligotrophic environment. Scolelepis sp. B, sampled in one station, exhibits the same patterns as Scolepis sp. A. Only three other species are present in this environment; carnivores or suspension feeders, they occur in low densities (< 10 individuals.m−2).  相似文献   

19.
Bishop MJ  Peterson CH 《Oecologia》2006,147(3):426-433
The paradigmatic gradient for intertidal marine organisms of increasing physical stress from low to high elevation has long served as the basis for using direct effects of duration of water coverage to predict many biological patterns. Accordingly, changes in potential feeding time may predict the direction and magnitude of differences between elevations in individual growth rates of sessile marine invertebrates. Oysters (triploid Crassostrea ariakensis) experimentally introduced at intertidal (MLW+0.05 m) and subtidal (MLW–0.25 m) elevations in racks provided a test of the ability to use duration of water coverage to predict changes in growth. During early-to-mid winter, a depression of 38–47% in shell growth of intertidal oysters matched the 36% reduction in available feeding time relative to subtidal oysters. In late winter as solar heating of exposed oysters increased, growth differences of 52–55% departed only slightly from the predicted 39%. In spring, however, duration of water coverage failed to predict even the correct direction of growth change with elevation as intertidal oysters grew 34% faster despite 39% less feeding time. Intense seasonal development of shell fouling by other suspension feeders like ascidians, mussels, and barnacles on subtidal (94% incidence) but not on aerially exposed intertidal (21–38% incidence) oysters may explain why duration of water cover failed to predict spring growth differences. Less intense fouling develops on intertidal oysters due to the physiological stress of aerial exposure on settlers, especially during higher temperatures and longer solar exposures of spring. Fouling by suspension feeders is known to reduce growth of the host through localized competition for food and added energetic costs. Thus, in springtime, indirect effects of aerial exposure providing a partial refuge from biological enemies overwhelmed direct effects of reduced duration of water coverage to reverse the expected pattern of slower intertidal growth of a marine invertebrate.  相似文献   

20.
In some species, dependent offspring join foraging providers and beg for food. Mobile offspring might benefit from evolving begging signals adapted to the different situations they are exposed to, but this possibility has been ignored. In cooperatively breeding meerkats (Suricata suricatta), dependent offspring use a repertoire of several begging calls when joining foraging adults. We found that these calls can be differentiated on the basis of their acoustic structure and that pups adjusted the use of specific call types according to the social context. Pups continuously gave "repeat" calls when they accompanied foraging adults, and playback of these calls increased provisioning by the adults. When pups saw adults with food, they switched from repeat calls to vigorous "high-pitched" calls; adults also preferred to "feed" loudspeakers broadcasting high-pitched calls rather then loudspeakers broadcasting repeat calls. The elaboration of different begging calls might reflect an adaptation to a situation where dependent young must solicit food from potential feeders while at the same time directing feeders to bring the prey item to themselves and not to another begging pup. Here we show that mobile but dependent offspring adapt to different contexts in a mobile feeding system by using a repertoire of begging calls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号