首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The native auxin, indole-3-acetic acid (IAA), is a major regulator of plant growth and development. Its nonuniform distribution between cells and tissues underlies the spatiotemporal coordination of many developmental events and responses to environmental stimuli. The regulation of auxin gradients and the formation of auxin maxima/minima most likely involve the regulation of both metabolic and transport processes. In this article, we have demonstrated that 2-oxindole-3-acetic acid (oxIAA) is a major primary IAA catabolite formed in Arabidopsis thaliana root tissues. OxIAA had little biological activity and was formed rapidly and irreversibly in response to increases in auxin levels. We further showed that there is cell type–specific regulation of oxIAA levels in the Arabidopsis root apex. We propose that oxIAA is an important element in the regulation of output from auxin gradients and, therefore, in the regulation of auxin homeostasis and response mechanisms.  相似文献   

2.
3.
The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha.  相似文献   

4.
5.
The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification–related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.  相似文献   

6.
7.
The phytohormone auxin (indole-3-acetic acid [IAA]) plays a fundamental role in vegetative and reproductive plant development. Here, we characterized a seed-specific viable maize (Zea mays) mutant, defective endosperm18 (de18) that is impaired in IAA biosynthesis. de18 endosperm showed large reductions of free IAA levels and is known to have approximately 40% less dry mass, compared with De18. Cellular analyses showed lower total cell number, smaller cell volume, and reduced level of endoreduplication in the mutant endosperm. Gene expression analyses of seed-specific tryptophan-dependent IAA pathway genes, maize Yucca1 (ZmYuc1), and two tryptophan-aminotransferase co-orthologs were performed to understand the molecular basis of the IAA deficiency in the mutant. Temporally, all three genes showed high expression coincident with high IAA levels; however, only ZmYuc1 correlated with the reduced IAA levels in the mutant throughout endosperm development. Furthermore, sequence analyses of ZmYuc1 complementary DNA and genomic clones revealed many changes specific to the mutant, including a 2-bp insertion that generated a premature stop codon and a truncated YUC1 protein of 212 amino acids, compared with the 400 amino acids in the De18. The putative, approximately 1.5-kb, Yuc1 promoter region also showed many rearrangements, including a 151-bp deletion in the mutant. Our concurrent high-density mapping and annotation studies of chromosome 10, contig 395, showed that the De18 locus was tightly linked to the gene ZmYuc1. Collectively, the data suggest that the molecular changes in the ZmYuc1 gene encoding the YUC1 protein are the causal basis of impairment in a critical step in IAA biosynthesis, essential for normal endosperm development in maize.The phytohormone auxin, as a signaling molecule, controls and coordinates numerous aspects of plant growth and development. Indole-3-acetic acid (IAA) is the most predominant in planta auxin and regulates diverse processes, including cell division, cell elongation, formation and maintenance of meristems, vascular tissue differentiation, phototropism, flowering, and endosperm and embryo growth in developing seeds (Davies, 2010). Despite its critical roles, basic components of IAA biosynthesis are poorly understood, compared with transport and signaling aspects. However, the use of appropriate genetic screens in Arabidopsis (Arabidopsis thaliana) and the use of sensitive analytical tools in the identification of metabolic intermediates have led to significant advancements toward a better understanding of biosynthesis. Currently, there are four proposed Trp-dependent pathways of de novo IAA biosynthesis in plants (Woodward and Bartel, 2005; Pollmann et al., 2009; Normanly, 2010); of these, indole-3-pyruvic acid (IPA) was recently suggested to predominate in Arabidopsis (Mashiguchi et al., 2011; Won et al., 2011; Stepanova et al., 2011) and in pea (Pisum sativum) seeds (Tivendale et al., 2012).The first step of the IPA pathway involves the conversion of Trp to IPA by Trp aminotransferases, first demonstrated in Arabidopsis by Stepanova et al. (2008) and Tao et al. (2008). The mutants of Arabidopsis Trp-aminotransferase (taa1) are defective in shade avoidance syndrome due to reduced levels of IAA. In maize (Zea mays), orthologs of the TAA1 gene include an endosperm-specific gene, ZmTar1 (for TA-Related1; Chourey et al., 2010) and Vanishing tassel2 (Vt2), which encode grass-specific Trp aminotransferases (Phillips et al., 2011). The vt2 mutant is marked by severe developmental abnormality, attributed to approximately 60% reduced IAA levels in the mutant seedlings. These results are significant in showing the functionality of the TAR enzyme and the IPA pathway in IAA biosynthesis in maize. Recently, it was suggested that the IPA pathway also involves the YUCCA (YUC) genes, which encode flavin monooxygenases that are now believed to catalyze the conversion of IPA to IAA (Phillips et al., 2011; Mashiguchi et al., 2011; Stepanova et al., 2011; Won et al., 2011; Kriechbaumer et al., 2012). This is based in part on evidence that the Arabidopsis YUC2 protein, expressed in Escherichia coli, converted IPA to IAA in vitro (Mashiguchi et al., 2011). In Arabidopsis, three Yuc genes, Yuc-1, -4, and -10, are expressed in an overlapping fashion in developing seeds and are considered essential in embryogenesis (Cheng et al., 2007); however, single or double mutant yuc1 yuc4 do not show detectable defects in embryogenesis or seed phenotype.Orthologs of the AtYuc genes are now described in several plant groups, including maize (Gallavotti et al., 2008; LeClere et al., 2010). The first Yuc-like gene in maize was isolated through positional cloning of the sparse inflorescence1 (spi1) locus; spi1 mutants showed auxin-deficient-related characteristics in the male inflorescence (Gallavotti et al., 2008). The second gene, ZmYuc1, is highly endosperm specific and its temporal expression pattern coincided with IAA biosynthesis at various stages of seed development (LeClere et al., 2010). In pea, two highly similar PsYuc-like genes, PsYuc1 and PsYuc2, showed seed- and root-specific expression, respectively (Tivendale et al., 2010). Metabolic studies in pea, however, showed that only the roots but not seeds can metabolize Trp to IAA through the proposed TAM pathway (Quittenden et al., 2009; Tivendale et al., 2010).In contrast with many studies on auxin-related mutants that affect vegetative parts of the plant, very limited data are available on auxin mutants affecting seed development, even though seeds accumulate higher levels of IAA than any other tissue of the plant. In maize, endosperm synthesizes nearly 100- to 500-fold higher levels of IAA relative to vegetative tissues (Jensen and Bandurski, 1994; LeClere et al., 2008; Phillips et al., 2011). The significance of the large abundance of IAA in developing endosperm remains to be understood, except that it may be used during the very early stages of seed germination because >90% of the total IAA is in biologically inactive conjugated storage form (Jensen and Bandurski, 1994; LeClere et al., 2008). Such a role in germination is consistent with the fact that there are very few viable seed mutants reported in maize that are linked to IAA deficiency, although single-locus recessive mutants (defective kernels [dek]) with various abnormalities in either embryo or endosperm development and with low IAA levels (measured by ELISA) were reported by Lur and Setter (1993). It is significant in this regard that a viable defective endosperm-B18 (hereafter, de18) was identified as associated with IAA deficiency (Torti et al., 1986). Although not quantified by mass spectrometry, de18 endosperms contained total IAA levels (including conjugates) in the range of 6% to 0.3% of the wild type B37 (hereafter, De18) values, during 12 to 40 d after pollination (DAP). At the early stages, the mutant seed phenotype is <50% of the wild type in seed weight, and throughout seed development, mutant seeds are reduced in kernel size and accumulate less dry matter. Furthermore, application of the synthetic auxin, naphthalene acetic acid, to developing seeds largely rescued the de18 mutant phenotype, indicating impairment in IAA biosynthesis or metabolism as the cause of the phenotypic changes (Torti et al., 1986). Recent cellular-level studies also indicated the IAA deficiency of the de18 endosperm; high levels of immunosignal for IAA were detected in the basal endosperm transfer layer (BETL), aleurone, embryo surrounding region domains, and maternal chalazal tissue in De18 but not in the mutant (Forestan et al., 2010). Overall, the maize de18 and the pea tar2 (Tivendale et al., 2012) mutants are thus far the only seed-specific viable mutants linked to auxin deficiency. The objective of this study is to further extend our knowledge on IAA deficit in the de18 kernels, to specifically analyze temporal expression of two major IAA biosynthetic genes and to elucidate the possible molecular basis of the mutant. Our collective data, based on the cloning and sequencing of ZmYuc1 and on mapping studies, indicate that ZmYuc1 and De18 are tightly associated and that the aberrant YUC1 protein in de18 is the causal basis of IAA deficiency and the small seed phenotype in that mutant.  相似文献   

8.
CATION EXCHANGERs CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3 in regulating apoplastic pH and describe how they contribute to auxin transport using the guard cell’s response as readout of hormone signaling and cross talk. We show that indole-3-acetic acid (IAA) inhibition of abscisic acid (ABA)-induced stomatal closure is impaired in cax1, cax3, and cax1/cax3. These mutants exhibited constitutive hypopolarization of the plasma membrane, and time-course analyses of membrane potential revealed that IAA-induced hyperpolarization of the plasma membrane is also altered in these mutants. Both ethylene and 1-naphthalene acetic acid inhibited ABA-triggered stomatal closure in cax1, cax3, and cax1/cax3, suggesting that auxin signaling cascades were functional and that a defect in IAA transport caused the phenotype of the cax mutants. Consistent with this finding, chemical inhibition of AUX1 in wild-type plants phenocopied the cax mutants. We also found that cax1/cax3 mutants have a higher apoplastic pH than the wild type, further supporting the hypothesis that there is a defect in IAA import in the cax mutants. Accordingly, we were able to fully restore IAA inhibition of ABA-induced stomatal closure in cax1, cax3, and cax1/cax3 when stomatal movement assays were carried out at a lower extracellular pH. Our results suggest a network linking the vacuolar cation exchangers to apoplastic pH maintenance that plays a crucial role in cellular processes.Stomata are pores at the surface of the leaves, gating water loss and gas exchange between plants and the atmosphere. One stoma is formed by two specialized guard cells that are able to modulate their size and shape to control stomatal aperture in response to various signals, including water status, hormonal stimuli, CO2 levels, light, or temperature (Kwak et al., 2008). These stomatal movements are regulated by ion fluxes in guard cells, the changes in the osmoticum status being compensated by water movement, which modifies the cell’s volume. Ion transport between the cell and ion stores (vacuole, apoplastic space) must be therefore tightly controlled, and any change in the guard cell’s ability to regulate this can compromise its faculty to trigger stomatal movement.Calcium ion (Ca2+) is one ion that regulates stomatal movements, and its cytosolic concentration is controlled by both influx, via plasma membrane channels, and release from internal stores such as vacuoles and the endoplasmic reticulum. Calcium transport from the vacuole is ensured, at least in part, by members of the Cation Exchanger (CAX) family (Punshon et al., 2012). Six members of this family are found in Arabidopsis (Arabidopsis thaliana); all use a proton gradient generated by the vacuolar H+-ATPase (VHA) or the vacuolar pyrophosphatase (AVP1) to energize their activity. CAX1 and CAX3 are the closest homologs within the family and have been proposed to play similar roles in Ca2+ homeostasis (Zhao et al., 2008). However, biochemical characterization highlighted differences in their respective rates of Ca2+ transport, and they have been proposed to function as heterodimers, with unique properties associated with this structure (Cheng et al., 2005).Among common phenotypes of cax1 and cax3, an increased sensitivity to abscisic acid (ABA; Zhao et al., 2008) suggests a function for these transporters in modulating hormone signaling. ABA is well known for its role in triggering stomatal closure, whereas auxin, ethylene, or cytokinins can counteract its effect. Auxin in particular is also essential in governing plant development, including root architecture, tropisms and polarity, apical dominance, tissue differentiation, and plant development. Tight control of its distribution throughout the plant is achieved via ubiquitous and specific expression of members of three transporter families, acting together in mediating indole-3-acetic acid (IAA) fluxes (Krecek et al., 2009).The unique pattern of auxin distribution is predominately due to the asymmetrical localization of members of the PIN-FORMED (PIN) family of auxin exporters (Zazímalová et al., 2010). In Arabidopsis, this family comprises eight members, whose spatiotemporal expression is responsible for the auxin gradient observed in many plant tissues (Paponov et al., 2005). In addition, most members of the ATP-binding cassette (ABC)-type family of exporter ABCB (ABCB/multidrug resistance/phosphoglycoprotein) have been shown to mediate auxin export from the cell (Geisler and Murphy, 2006). Auxin import is mainly ensured by (1) active transport of IAA by members of the AUX1/LAX family proteins (Geisler and Murphy, 2006), and (2) passive diffusion across the plasma membrane. AUX1 activity was demonstrated to be pH-dependent (Yang et al., 2006), IAA transport being optimal at acidic pH (5.5–6), and dramatically reduced at higher values. It is interesting that passive, pH-dependent IAA diffusion across the plasma membrane also accounts for an important part of IAA transport and signaling. At apoplastic pH (5.5), between 10% and 25% of IAA is protonated (Yang et al., 2006), which allows for free diffusion of IAA through the membrane. In contrast, the ratio between protonated and deprotonated IAA (IAAH/IAA) falls to 1% to 5% when pH exceeds 6.5, preventing it from being passively transported into the cytoplasm (Yang et al., 2006). These two aspects make control of the apoplastic pH crucial in the regulation of auxin signaling, as it modulates all the known routes of IAA import. Such a tight pH constraint is ensured by plasma membrane-localized Arabidopsis H+-ATPases (AHA; Haruta et al., 2010) that transport protons from the cytosol to the extracellular space.Our work presents the characterization of two vacuolar transporters’ abilities to modulate the apoplastic pH, and therefore contribute to proper auxin transport and signaling. Our results highlight the effects of mutations in CAX1 and CAX3 in plant development and in stomatal functioning, providing new insights for understanding hormone signaling in plants as well as plant adaptation to stress conditions via hormone cross talk.  相似文献   

9.
10.
11.
The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress–induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance.  相似文献   

12.
The architecture of a plant’s root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly important during the early phases of lateral root organogenesis to ensure continuous lateral root initiation (LRI) and proper development of lateral root primordia (LRP). Here, we show that the early phases of lateral root organogenesis, including priming and initiation, take place in root zones with a repressed cytokinin response. Accordingly, ectopic overproduction of cytokinin in the root basal meristem most efficiently inhibits LRI. Enhanced cytokinin responses in pericycle cells between existing LRP might restrict LRI near existing LRP and, when compromised, ectopic LRI occurs. Furthermore, our results demonstrate that young LRP are more sensitive to perturbations in the cytokinin activity than are developmentally more advanced primordia. We hypothesize that the effect of cytokinin on the development of primordia possibly depends on the robustness and stability of the auxin gradient.  相似文献   

13.
Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.  相似文献   

14.
15.
16.
17.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.Due to agricultural practices and climate change, soil salinity has become a serious factor limiting the productivity and quality of agricultural crops (Zhu, 2007). Worldwide, high salinity in the soil damages approximately 20% of total irrigated lands and takes 1.5 million ha out of production each year (Munns and Tester, 2008). In general, high salinity affects plant growth and development by reducing plant water potential, altering nutrient uptake, and increasing the accumulation of toxic ions (Hasegawa et al., 2000; Munns, 2002; Zhang and Shi, 2013). Together, these effects severely reduce plant growth and survival.Because the root is the first organ to sense high salinity, salt stress plays a direct, important role in modulating root system architecture (Wang et al., 2009). For instance, salt stress negatively regulates root hair formation and gravitropism (Sun et al., 2008; Wang et al., 2008). The role of salt in lateral root formation depends on the NaCl concentration. While high NaCl levels inhibit lateral root formation, lower NaCl levels stimulate lateral root formation in an auxin-dependent manner (Zolla et al., 2010; Ji et al., 2013). The root meristem plays an essential role in sustaining root growth (Perilli et al., 2012). Salt stress inhibits primary root elongation by suppressing root meristem activity (West et al., 2004). However, how this inhibition occurs remains largely unclear.Plant hormones are important intermediary signaling compounds that function downstream of environmental stimuli. Among plant hormones, indole-3-acetic acid (IAA) is thought to play a fundamental role in root system architecture by regulating cell division, expansion, and differentiation. In Arabidopsis (Arabidopsis thaliana) root tips, a distal auxin maximum is formed and maintained by polar auxin transport (PAT), which determines the orientation and extent of cell division in the root meristem as well as root pattern formation (Sabatini et al., 1999). PINFORMED (PIN) proteins, which are components of the auxin efflux machinery, regulate primary root elongation and root meristem size (Blilou et al., 2005; Dello Ioio et al., 2008; Yuan et al., 2013, 2014). The auxin signal transduction pathway is activated by direct binding of auxin to its receptor protein, TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB), promoting the degradation of Aux/IAA proteins, releasing auxin response factors (ARFs), and activating the expression of auxin-responsive genes (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Aux/IAA proteins are short-lived, nuclear-localized proteins that play key roles in auxin signal activation and root growth modulation (Rouse et al., 1998). Other hormones and stresses often regulate auxin signaling by affecting Aux/IAA protein stability (Lim and Kunkel, 2004; Nemhauser et al., 2004; Wang et al., 2007; Kushwah and Laxmi, 2014).Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants (He et al., 2004; Fernández-Marcos et al., 2011; Shi et al., 2012), including important roles in the regulation of root growth and development. NO functions downstream of auxin during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002). Exogenous auxin-induced NO biosynthesis is associated with nitrate reductase activity during lateral root formation, and NO is necessary for auxin-induced lateral root and root hair development (Pagnussat et al., 2002; Lombardo et al., 2006). Pharmacological and genetic analyses in Arabidopsis indicate that NO suppresses primary root growth and root meristem activity (Fernández-Marcos et al., 2011). Additionally, both exogenous application of the NO donor sodium nitroprusside (SNP) and overaccumulation of NO in the mutant chlorophyll a/b binding protein underexpressed1 (cue1)/nitric oxide overproducer1 (nox1) result in reduced PIN1 expression and auxin accumulation in root tips. The auxin receptors protein TIR1 is S-nitrosylated by NO, suggesting that this protein is a direct target of NO in the regulation of root development (Terrile et al., 2012).Because NO is a free radical, NO levels are dynamically regulated by endogenous and environmental cues. Many phytohormones, including abscisic acid, auxin, cytokinin, salicylic acid, jasmonic acid, and ethylene, induce NO biosynthesis (Zottini et al., 2007; Kolbert et al., 2008; Tun et al., 2008; García et al., 2011). In addition, many abiotic and biotic stresses or stimuli, such as cold, heat, salt, drought, heavy metals, and pathogens/elicitors, also stimulate NO biosynthesis (Zhao et al., 2009; Mandal et al., 2012). Salt stress stimulates NO and ONOO accumulation in roots (Corpas et al., 2009), but the contribution of NO to root meristem growth under salinity stress has yet to be examined in detail.In this study, we found that salt stress significantly down-regulated the expression of PIN genes and promoted AUXIN RESISTANT3 (AXR3)/IAA17 stabilization. Furthermore, salt stress stimulated NO accumulation, and pharmacological inhibition of NO biosynthesis compromised the salt-mediated reduction in root meristem size. Our results support a model in which salt stress reduces root meristem size by increasing NO accumulation, which represses PIN expression and stabilizes IAA17, thereby reducing auxin levels and repressing auxin signaling.  相似文献   

18.
19.
Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two hormone groups are cell type specific.  相似文献   

20.
The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号