首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Pelegri  R. Lehmann 《Genetics》1994,136(4):1341-1353
Anteroposterior polarity of the Drosophila embryo is initiated by the localized activities of the maternal genes, bicoid and nanos, which establish a gradient of the hunchback (hb) morphogen. nanos determines the distribution of the maternal Hb protein by regulating its translation. To identify further components of this pathway we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are expressed in spite of high Hb levels. The suppressors are alleles of Enhancer of zeste (E(z)) a member of the Polycomb group (Pc-G) of genes. We show that E(z), and likely other Pc-G genes, are required for maintaining the expression domains of knirps and giant initiated by the maternal Hb protein gradient. We have identified a small region of the knirps promoter that mediates the regulation by E(z) and hb. Because Pc-G genes are thought to control gene expression by regulating chromatin, we propose that imprinting at the chromatin level underlies the determination of anteroposterior polarity in the early embryo.  相似文献   

2.
3.
4.
Denell RE 《Genetics》1978,90(2):277-289
Three dominant mutant alleles of the Polycomb locus of Drosophila melanogaster are associated with homoeotic transformations of meso- and metathoracic to prothoracic legs, a homoeotic transformation of antennae to legs, and abnormalities of wings and some thoracic bristles. Puro and Nygrén (1975) localized Polycomb in the proximal left arm of chromosome 3 within salivary gland chromosome interval 77E,F-80. In the present study, the location and dosage relationships of this locus were examined, using translocation-generated segmental aneuploidy. The results indicate that Polycomb lies within interval 78C,D-79D, and that the locus is haplo-insufficient. Males hypoploid for this interval show meso- and metathoracic leg transformations, and both males and females show wing abnormalities. In addition, the legs of hypoploids of both sexes are shorter than those of wild-type flies, and show aberrancies of segmentation, chaetal number and distribution, and other morphological characteristics. Hypoploid flies do not express a homoeotic antennal-leg transformation, but the deficiency is associated with a Minute phenotype that is known to suppress this transformation in Polycomb flies; thus it cannot be ascertained whether the antennal-leg transformation is a haplo-insufficient phenotype. It is suggested that the expression of non-homoeotic pleiotropic effects provides a criterion for identifying homoeotic mutations that do not function directly in the establishment of determined states, but rather cause homoeosis indirectly. Polycomb is interpreted in this fashion, and it is suggested that the mutant syndrome may result from localized cell death.  相似文献   

5.

Background

Ionizing radiation is genotoxic to cells. Healthy tissue toxicity in patients and radiation resistance in tumors present common clinical challenges in delivering effective radiation therapies. Radiation response is a complex, polygenic trait with unknown genetic determinants. The Drosophila Genetic Reference Panel (DGRP) provides a model to investigate the genetics of natural variation for sensitivity to radiation.

Methods and Findings

Radiation response was quantified in 154 inbred DGRP lines, among which 92 radiosensitive lines and 62 radioresistant lines were classified as controls and cases, respectively. A case-control genome-wide association screen for radioresistance was performed. There are 32 single nucleotide polymorphisms (SNPs) associated with radio resistance at a nominal p<10−5; all had modest effect sizes and were common variants with the minor allele frequency >5%. All the genes implicated by those SNP hits were novel, many without a known role in radiation resistance and some with unknown function. Variants in known DNA damage and repair genes associated with radiation response were below the significance threshold of p<10−5 and were not present among the significant hits. No SNP met the genome-wide significance threshold (p = 1.49×10−7), indicating a necessity for a larger sample size.

Conclusions

Several genes not previously associated with variation in radiation resistance were identified. These genes, especially the ones with human homologs, form the basis for exploring new pathways involved in radiation resistance in novel functional studies. An improved DGRP model with a sample size of at least 265 lines and ideally up to 793 lines is recommended for future studies of complex traits.  相似文献   

6.
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.  相似文献   

7.
8.
9.
There are 11 Polycomb group genes known in Drosophila. These genes are negative regulators of homeotic gene expression, and may act by modifying chromatin structure. It is not clear how many members of the Polycomb group of genes exist. Many were discovered because of their homeotic phenotypes, or because they enhance homeotic mutations. Systematic screens for enhancers of Polycomb have identified previously known members of the Polycomb group. In an attempt to discover cytological locations of new Polycomb group genes, we crossed deletions uncovering about 20% of the genome to Polycomb-like and Polycomb and scored for enhancement of the extra sex combs phenotype. Haploidy for four regions, 36F7-37A, 43E18; 44B5-9, 70C2-6, and 70C6-15; 70D enhanced the extra sex comb phenotype associated with strong Polycomb group mutations. These regions have homeotic phenotypes either as homozygous embryos or heterozy-gous adults, or both. We also show that spalt enhances Polycomb group mutations. These results are discussed with respect to previous estimates of Polycomb group gene number. © 1994 Wiley-Liss, Inc.  相似文献   

10.
维生素A的活性代谢物维甲酸在哺乳动物精子发生过程中发挥着重要的调节作用,但其具体调节机制并不十分清楚。该文拟对睾丸内维甲酸的运输、代谢、信号系统以及维甲酸调控精子发生的研究进展进行简单总结。  相似文献   

11.
12.
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N–bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.  相似文献   

13.
14.
15.
Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl–PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.  相似文献   

16.
Pairwise interaction of three alleles of Antennapedia (Antp49, Antp 50 and APX) with two alleles of Polycomb (Pc1 and Pc2) considerably increased homoeotic transformation of antennae caused by Antennapedia gene (up to the formation of completely developed homoeotic legs). On the contrary, Antennapedia alleles decreased the transformation of meso- and metatoracic legs into protoracic legs, as caused by Pc alleles. The degree of changes in the expression of Antp and Pc due to intergenic interaction were, as a rule, Antennapedia specific, i.e. the differences were greater when Antp alleles were substituted in genotypes. A possible mechanism of the interaction observed is discussed.  相似文献   

17.
The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet important, element for the evolutionary dynamics of TEs.  相似文献   

18.
Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE–DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号