首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.

Background

Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data.

Results

In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general.

Conclusion

GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.  相似文献   

4.
High‐copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype‐driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high‐copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar‐coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype‐driven Mu tagging in maize, and could be adapted for use with other high‐copy transposons. A by‐product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources.  相似文献   

5.
Inferring causal phenotype networks from segregating populations   总被引:2,自引:1,他引:1       下载免费PDF全文
A major goal in the study of complex traits is to decipher the causal interrelationships among correlated phenotypes. Current methods mostly yield undirected networks that connect phenotypes without causal orientation. Some of these connections may be spurious due to partial correlation that is not causal. We show how to build causal direction into an undirected network of phenotypes by including causal QTL for each phenotype. We evaluate causal direction for each edge connecting two phenotypes, using a LOD score. This new approach can be applied to many different population structures, including inbred and outbred crosses as well as natural populations, and can accommodate feedback loops. We assess its performance in simulation studies and show that our method recovers network edges and infers causal direction correctly at a high rate. Finally, we illustrate our method with an example involving gene expression and metabolite traits from experimental crosses.  相似文献   

6.

Background

Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures.

Results

We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function.We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes.

Conclusions

We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and phenotypes that would be overlooked by a semantics-based approach. Future work will include the implementation of the described algorithms for a variety of other model organism databases, taking full advantage of the abundance of available high quality curated data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0405-z) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
MOTIVATION: Large-scale association studies, investigating the genetic determinants of a phenotype of interest, are producing increasing amounts of genomic variation data on human cohorts. A fundamental challenge in these studies is the detection of genotypic patterns that discriminate individuals exhibiting the phenotype under study from individuals that do not possess it. The difficulty stems from the large number of single nucleotide polymorphism (SNP) combinations that have to be tested. The discrimination problem becomes even more involved when additional high-throughput data, such as gene expression data, are available for the same cohort. RESULTS: We have developed a graph theoretic approach for identifying discriminating patterns (DPs) for a given phenotype in a genotyped population. The method is based on representing the SNP data as a bipartite graph of individuals and their SNP states, and identifying fully connected subgraphs of this graph that relate individuals enriched for a given phenotypic group. The method can handle additional data types such as expression profiles of the genotyped population. It is reminiscent of biclustering approaches with the crucial difference that its search process is guided by the phenotype under consideration in a supervised manner. We tested our approach in simulations and on real data. In simulations, our method was able to retrieve planted patterns with high success rate. We then applied our approach to a dataset of 72 breast cancer patients with available gene expression profiles, genotyped over 695 SNPs. We detected several DPs that were highly significant with respect to various clinical phenotypes, and investigated the groups of patients and the groups of genes they defined. We found the patient groups to be highly enriched for other phenotypes and to display expression coherency among their profiles. The gene groups displayed functional coherency and involved genes with known role in cancer, providing additional support to their involvement. AVAILABILITY: The program is available upon request.  相似文献   

9.
Finding structural similarities between proteins often helps reveal shared functionality, which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures, however, remains a hard problem. An alternative approach is to approximate each three-dimensional protein structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences or structural sequences. In this article, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments having four residues. We show that the global structural sequences approximate well the native structures of proteins, with an average coordinate root mean square of 0.69 Å over 2225 test proteins. The approximation is best for all α-proteins, while relatively poorer for all β-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary-structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary-structure information or local information from the structural sequence considerably improves the classification accuracy. The two fragment-based sequences perform better than the secondary-structure sequence but not well enough at this stage to be a viable alternative to more computationally intensive methods based on protein structure alignment.  相似文献   

10.
Phenotypes are investigated in model organisms to understand and reveal the molecular mechanisms underlying disease. Phenotype ontologies were developed to capture and compare phenotypes within the context of a single species. Recently, these ontologies were augmented with formal class definitions that may be utilized to integrate phenotypic data and enable the direct comparison of phenotypes between different species. We have developed a method to transform phenotype ontologies into a formal representation, combine phenotype ontologies with anatomy ontologies, and apply a measure of semantic similarity to construct the PhenomeNET cross-species phenotype network. We demonstrate that PhenomeNET can identify orthologous genes, genes involved in the same pathway and gene-disease associations through the comparison of mutant phenotypes. We provide evidence that the Adam19 and Fgf15 genes in mice are involved in the tetralogy of Fallot, and, using zebrafish phenotypes, propose the hypothesis that the mammalian homologs of Cx36.7 and Nkx2.5 lie in a pathway controlling cardiac morphogenesis and electrical conductivity which, when defective, cause the tetralogy of Fallot phenotype. Our method implements a whole-phenome approach toward disease gene discovery and can be applied to prioritize genes for rare and orphan diseases for which the molecular basis is unknown.  相似文献   

11.
12.
MS‐based proteomics characterizes protein contents of biological samples. The most common approach is to first match observed MS/MS peptide spectra against theoretical spectra from a protein sequence database and then to score these matches. The false discovery rate (FDR) can be estimated as a function of the score by searching together the protein sequence database and its randomized version and comparing the score distributions of the randomized versus nonrandomized matches. This work introduces a straightforward isotonic regression‐based method to estimate the cumulative FDRs and local FDRs (LFDRs) of peptide identification. Our isotonic method not only performed as well as other methods used for comparison, but also has the advantages of being: (i) monotonic in the score, (ii) computationally simple, and (iii) not dependent on assumptions about score distributions. We demonstrate the flexibility of our approach by using it to estimate FDRs and LFDRs for protein identification using summaries of the peptide spectra scores. We reconfirmed that several of these methods were superior to a two‐peptide rule. Finally, by estimating both the FDRs and LFDRs, we showed for both peptide and protein identification, moderate FDR values (5%) corresponded to large LFDR values (53 and 60%).  相似文献   

13.
14.
A sentinel phenotype is a clinical disorder or syndrome that (1) occurs sporadically as a consequence of a single, highly penetrant mutant gene, (2) is a dominant or X-linked trait of considerable frequency and low fitness, and (3) is uniformly expressed and accurately diagnosable with minimal effort at or near birth. Although 1828 autosomal dominant traits are known in human beings, 36 can be considered as candidate sentinel phenotypes, along with 5 X-linked disorders. Based on surveys of malformations in infants and children, 16 additional traits are proposed beyond previous lists. In Hungary, the 24 syndromes or defects with reliable manifestations in newborn infants occur with a frequency of 2.5-3.3 per 10 000 live births. As markers of human mutations, sentinel phenotypes have the advantage of representing germinal mutations that result in significant health problems. There are severe disadvantages that have, to date, prevented the launching of a field demonstration of the value of these phenotypes in mutation epidemiology. Agreement on a list of phenotypes has been delayed by continued recognition of two or more distinct genetic diseases within what was once thought to be a single disorder. For the same reason, most of the candidate sentinel phenotypes have not been assigned unique codes in the International Classification of Diseases. Each of the disorders is so rare and has features that overlap with so many other syndromes that highly trained clinical dysmorphologist and pediatric ophthalmologists would have to be engaged in any study. The sentinel phenotype approach, like other strategies in mutation epidemiology, would encounter problems with linkage among files of data, privacy, and access to sufficiently large populations. In contrast with the approach using multiple protein variants (as in the study of blood from offspring of survivors of the atomic bombs in Hiroshima and Nagasaki), the sentinel phenotype approach would likely be much less expensive and would encounter far fewer false attributions of paternity, but also would require a much larger study population. The best option for the present, in our opinion, is to broaden and sustain critical discussion of the approach. Perhaps the goal should be to plan a field demonstration by involving appropriate clinicians, epidemiologists, and public health officials. A pilot effort underway in Hungary may well give insight to applying the approach in a significantly larger population.  相似文献   

15.
《Genomics》2021,113(4):2229-2239
The genotype-phenotype link is a major research topic in the life sciences but remains highly complex to disentangle. Part of the complexity arises from the number of genes contributing to the observed phenotype. Despite the vast increase of molecular data, pinpointing the causal variant underlying a phenotype of interest is still challenging. In this study, we present an approach to map causal variation and molecular pathways underlying important phenotypes in pigs. We prioritize variation by utilizing and integrating predicted variant impact scores (pCADD), functional genomic information, and associated phenotypes in other mammalian species. We demonstrate the efficacy of our approach by reporting known and novel causal variants, of which many affect non-coding sequences. Our approach allows the disentangling of the biology behind important phenotypes by accelerating the discovery of novel causal variants and molecular mechanisms affecting important phenotypes in pigs. This information on molecular mechanisms could be applicable in other mammalian species, including humans.  相似文献   

16.
Bacterial lipoproteins are a diverse and functionally important group of proteins that are amenable to bioinformatic analyses because of their unique signal peptide features. Here we have used a dataset of sequences of experimentally verified lipoproteins of Gram-positive bacteria to refine our previously described lipoprotein recognition pattern (G+LPP). Sequenced bacterial genomes can be screened for putative lipoproteins using the G+LPP pattern. The sequences identified can then be validated using online tools for lipoprotein sequence identification. We have used our protein sequence datasets to evaluate six online tools for efficacy of lipoprotein sequence identification. Our analyses demonstrate that LipoP () performs best individually but that a consensus approach, incorporating outputs from predictors of general signal peptide properties, is most informative. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The explosive growth in the number of protein sequences gives rise to the possibility of using the natural variation in sequences of homologous proteins to find residues that control different protein phenotypes. Because in many cases different phenotypes are each controlled by a group of residues, the mutations that separate one version of a phenotype from another will be correlated. Here we incorporate biological knowledge about protein phenotypes and their variability in the sequence alignment of interest into algorithms that detect correlated mutations, improving their ability to detect the residues that control those phenotypes. We demonstrate the power of this approach using simulations and recent experimental data. Applying these principles to the protein families encoded by Dscam and Protocadherin allows us to make testable predictions about the residues that dictate the specificity of molecular interactions.  相似文献   

18.
We have developed an integrated approach, using genetic and genomic methods, in conjunction with resources from the Southwest National Primate Research Center (SNPRC) baboon colony, for the identification of genes and their functional variants that encode quantitative trait loci (QTL). In addition, we use comparative genomic methods to overcome the paucity of baboon specific reagents and to augment translation of our findings in a nonhuman primate (NHP) to the human population. We are using the baboon as a model to study the genetics of cardiovascular disease (CVD). A key step for understanding gene–environment interactions in cardiovascular disease is the identification of genes and gene variants that influence CVD phenotypes. We have developed a sequential methodology that takes advantage of the SNPRC pedigreed baboon colony, the annotated human genome, and current genomic and bioinformatic tools. The process of functional polymorphism identification for genes encoding QTLs involves comparison of expression profiles for genes and predicted genes in the genomic region of the QTL for individuals discordant for the phenotypic trait mapping to the QTL. After comparison, genes of interest are prioritized, and functional polymorphisms are identified in candidate genes by genotyping and quantitative trait nucleotide analysis. This approach reduces the time and labor necessary to prioritize and identify genes and their polymorphisms influencing variation in a quantitative trait compared with traditional positional cloning methods.  相似文献   

19.
Pollen DNA metabarcoding—marker‐based genetic identification of potentially mixed‐species pollen samples—has applications across a variety of fields. While basic species‐level pollen identification using standard DNA barcode markers is established, the extent to which metabarcoding (a) correctly assigns species identities to mixes (qualitative matching) and (b) generates sequence reads proportionally to their relative abundance in a sample (quantitative matching) is unclear, as these have not been assessed relative to known standards. We tested the quantitative and qualitative robustness of metabarcoding in constructed pollen mixtures varying in species richness (1–9 species), taxonomic relatedness (within genera to across class) and rarity (5%–100% of grains), using Illumina MiSeq with the markers rbcL and ITS2. Qualitatively, species composition determinations were largely correct, but false positives and negatives occurred. False negatives were typically driven by lack of a barcode gap or rarity in a sample. Species richness and taxonomic relatedness, however, did not strongly impact correct determinations. False positives were likely driven by contamination, chimeric sequences and/or misidentification by the bioinformatics pipeline. Quantitatively, the proportion of reads for each species was only weakly correlated with its relative abundance, in contrast to suggestions from some other studies. Quantitative mismatches are not correctable by consistent scaling factors, but instead are context‐dependent on the other species present in a sample. Together, our results show that metabarcoding is largely robust for determining pollen presence/absence but that sequence reads should not be used to infer relative abundance of pollen grains.  相似文献   

20.
Programmatic access to data and tools through the web using so-called web services has an important role to play in bioinformatics. In this article, we discuss the most popular approaches based on SOAP/WS-I and REST and describe our, a cross section of the community, experiences with providing and using web services in the context of biological sequence analysis. We briefly review main technological approaches as well as best practice hints that are useful for both users and developers. Finally, syntactic and semantic data integration issues with multiple web services are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号