首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete nucleotide sequence of polyomavirus SA12   总被引:1,自引:0,他引:1       下载免费PDF全文
The Polyomaviridae have small icosahedral virions that contain a genome of approximately 5,000 bp of circular double-stranded DNA. Polyomaviruses infect hosts ranging from humans to birds, and some members of this family induce tumors in test animals or in their natural hosts. We report the complete nucleotide sequence of simian agent 12 (SA12), whose natural host is thought to be Papio ursinus, the chacma baboon. The 5,230-bp genome has a genetic organization typical of polyomaviruses. Sequences encoding large T antigen, small t antigen, agnoprotein, and the viral capsid proteins VP1, VP2, and VP3 are present in the expected locations. We show that, like its close relative simian virus 40 (SV40), SA12 expresses microRNAs that are encoded by the late DNA strand overlapping the 3' end of large T antigen coding sequences. Based on sequence comparisons, SA12 is most closely related to BK virus (BKV), a human polyomavirus. We have developed a real-time PCR test that distinguishes SA12 from BKV and the other closely related polyomaviruses JC virus and SV40. The close relationship between SA12 and BKV raises the possibility that these viruses circulate between human and baboon hosts.  相似文献   

2.
The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular DNA organized similarly to known polyomaviruses. Two putative “early” (small and large T antigen) and three putative “late” (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs (e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and, more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of TSV in the affected patient''s skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of 105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load. PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the impact of TSV infection in relation to other populations and diseases.  相似文献   

3.
P Deininger  A Esty  P LaPorte  T Friedmann 《Cell》1979,18(3):771-779
The nucleotide sequence of the late region of the polyoma genome has been determined. It consists of 2366 bp and encodes the virion capsid proteins VP1, VP2 and VP3. Extensive open reading frames identify the possible coding sequences of VP2 and VP3 toward the 5′ end of the late region, and of the major capsid protein VP1 toward the 3′ end of the late region. The 5′ end of the sequence encoding VP1 overlaps the 3′ VP2/VP3 region by 29 nucleotides and is in a different reading frame. The predicted amino acid sequences for all three known capsid proteins show extensive homology with the analogous capsid proteins of SV40 throughout most of their length. The VP2/VP3 amino acid homology between the two viruses is 34%, while the major capsid protein VP1 is much more highly conserved, showing 54% homology. These homologies together with the extent of open reading frames help to define the extent of the coding sequences. The VP2 initiator begins at position 269 and the coding region extends to the first termination codon beginning at 1226. The predicted size of VP2 is 35,007 daltons. A probable VP3 initiator is within the VP2 coding sequence at position 614 and is in the same frame as VP2. This coding sequence can also utilize the terminator at position 1226, and the predicted size of the VP3 translation product is 22,979 daltons. The VP1 coding region begins at position 1197 and continues in a frame different from that of VP2/ VP3 to a termination point at 2349. The molecular weight of VP1 is predicted to be 42,834 daltons. The 5′ untranslated region contains sequences that resemble a potential ribosomal binding site and a possible mRNA capping sequence similar to those found in other eucaryotic systems. There is also a sequence (5′-TCAAGTAAGTGA-3′) almost identical to one found in two regions containing potential splice sites in the early region of polyoma. The 5′ untranslated region does not show the extensive repeated sequences found in the similar region of SV40. The 3′ untranslated region contains the sequence 5′-AATAAA-3′, thought to represent a polyadenylation signal. As in the early region of polyoma, the extensive nucleotide and deduced amino acid homology with SV40 indicate a close evolutionary relationship between the two viruses, and help to identify regions of common and important structure-function relationships.  相似文献   

4.
5.
6.
7.
A polyomavirus was isolated from the eyes of horses, and the sequence was determined. A nearly identical VP1 sequence was amplified from the kidney of another animal. We report the complete genome sequence of the first polyomavirus to be isolated from a horse. Analysis shows it to be most closely related overall to human and nonhuman primate polyomaviruses.  相似文献   

8.
JC polyomavirus (JCV) is a member of the Polyomaviridae family. It presents a tropism to kidney cells, and the infection occurs in a variety of human population groups of different ethnic background. The present study investigated the prevalence of JCV infection among human populations from the Brazilian Amazon region, and describes the molecular and phylogenetic features of the virus. Urine samples from two urban groups of Belém (healthy subjects), one Brazilian Afro-descendant “quilombo” from the Rio Trombetas region, and native Indians from the Wai-Wai, Urubu-Kaapor, Tembé, Assurini, Arara do Laranjal, Aukre, Parakanã, Surui and Munduruku villages were investigated for the presence of the virus by amplifying VP1 (230 bp) and IG (610 bp) regions using a polymerase chain reaction. Nucleotide sequences (440 nucleotides, nt) from 48 samples were submitted to phylogenetic analysis. The results confirmed the occurrence of types A (subtype EU), B (subtypes Af-2, African and MY, Asiatic) and C (subtype Af-1) among healthy subjects; type B, subtypes Af-2 and MY, among the Afro-Brazilians; and type B, subtype MY, within the Surui Indians. An unexpected result was the detection of another polyomavirus, the BKV, among Afro-descendants. The present study shows, for the first time, the occurrence of JC and BK polyomaviruses infecting humans from the Brazilian Amazon region. The results show a large genetic variability of strains circulating in the region, infecting a large group of individuals. The presence of European, Asiatic and African subtypes associated to the ethnic origin of the population samples investigated herein, highlights the idea that JCV is a fairly good marker for studying the early migration of human populations, reflecting their early and late history. Furthermore, the identification of the specific mutations associated to the virus subtypes, suggests that these mutations have occurred after the entrance of the virus in the Amazon region of Brazil.  相似文献   

9.
Identification of a third human polyomavirus   总被引:20,自引:2,他引:18       下载免费PDF全文
We have previously reported on a system for large-scale molecular virus screening of clinical samples. As part of an effort to systematically search for unrecognized human pathogens, the technology was applied for virus screening of human respiratory tract samples. This resulted in the identification of a previously unknown polyomavirus provisionally named KI polyomavirus. The virus is phylogenetically related to other primate polyomaviruses in the early region of the genome but has very little homology (<30% amino acid identity) to known polyomaviruses in the late region. The virus was found by PCR in 6 (1%) of 637 nasopharyngeal aspirates and in 1 (0.5%) of 192 fecal samples but was not detected in sets of urine and blood samples. Since polyomaviruses have oncogenic potential and may produce severe disease in immunosuppressed individuals, continued searching for the virus in different medical contexts is important. This finding further illustrates how unbiased screening of respiratory tract samples can be used for the discovery of diverse virus types.  相似文献   

10.
Two novel polyomaviruses (PyVs) were identified in kidney and chest-cavity fluid samples of wild bank voles (Myodes glareolus) and common voles (Microtus arvalis) collected in Germany. All cloned and sequenced genomes had the typical PyV genome organization, including putative open reading frames for early regulatory proteins large T antigen and small T antigen on one strand and for structural late proteins (VP1, VP2 and VP3) on the other strand. Virus-like particles (VLPs) were generated by yeast expression of the VP1 protein of both PyVs. VLP-based ELISA and large T-antigen sequence-targeted polymerase-chain reaction investigations demonstrated signs of infection of these novel PyVs in about 42% of bank voles and 18% of common voles. In most cases only viral DNA, but not VP1-specific antibodies were detected. In additional animals exclusively VP1-specific antibodies, but no viral DNA was detected, indicative for virus clearance. Phylogenetic and clustering analysis including all known PyV genomes placed novel bank vole and common vole PyVs amongst members of the tentative Wukipolymavirus genus. The other known four rodent PyVs, Murine PyV and Hamster PyV, and Murine pneumotropic virus and Mastomys PyV belong to different phylogenetic clades, tentatively named Orthopolyomavirus I and Orthopolyomavirus II, respectively. In conclusion, the finding of novel vole-borne PyVs may suggest an evolutionary origin of ancient wukipolyomaviruses in rodents and may offer the possibility to develop a vole-based animal model for human wukipolyomaviruses.  相似文献   

11.
The nucleotide sequence of part of the late region of the polyoma virus genome was determined. It contains coding information for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. In the sequence with the same polarity as late mRNA's, all coding frames are blocked by termination codons in a region around 48 units on the physical map. This is the region where the N-terminus of VP1 and the C-termini of VP2 and VP3 have been located (T. Hunter and W. Gibson, J. Virol. 28:240-253, 1978; S. G. Siddell and A. E. Smith, J. Virol. 27:427-431, 1978; Smith et al., Cell 9:481-487, 1976). There are two long uninterrupted coding frames in the late region of polyoma virus DNA. One lies at the 5' end of the sequence and contains potential coding sequences for VP2 and VP3. The other contains 383 consecutive sense codons starting with the ATG at nucleotide position 1,218, extends from 47.5 to 25.8 units counterclockwise on the physical map, and is located where the VP1 gene has been mapped. The VP1 gene overlaps the genes for proteins VP2/VP3 by 32 nucleotides and uses a different coding frame. From the DNA sequence, the amino acid sequence of VP1 was predicted. The proposed VP1 sequence is in good agreement with other data, namely, with the partial N-terminal amino acid sequence and the total amino acid composition. The VP1 coding frame terminates with a TAA codon at 25.8 map units. This is followed by an AATAAA sequence, which may act as a processing signal for the viral late mRNA's. When both nucleotide and amino acid sequences are compared with their counterparts in the related simian virus 40, extensive homologies are found over the entire region of the two viral genomes. Maximum homology appears to occur in those regions which code for the C-termini of the VP1 proteins. The overlap region of VP1 with VP2/VP3 of polyoma virus is shorter by 90 nucleotides than is that of simian virus 40 and shows very limited homology with the simian virus 40 sequence. This leads to the suggestion that the overlap segments of both viruses have been freed from stringency imposed on drifting during evolution and that proteins VP2 and VP3 of polyoma virus may have been truncated by the appearance of a termination codon within the sequence.  相似文献   

12.
赵新泰  李载平 《遗传学报》1993,20(3):279-284
本试验测定了已克隆的貂肠炎病毒(MEV)复制型(RF)DNA的核苷酸序列,确定MEV基因组全长约为5064个核苷酸(nucleotides,nt),推测了3'端和5'端结构,在5'端非编码区有3个51 nt的重复。MEV基因组序列与犬细小病毒(CPV)、猫细小病毒(FPV)有很高的同源性,结构基因区的同源性分别达99.1%和99.9%,但在5'端非编码区有较大差异。MEV基因组结构与CPV和FPV基本一致,有两个大的开放阅读框架,分别编码688和722个氨基酸。在map unit(m.u.)3.7和m.u.39处有两个启动子,在m.u.97处有poly A位点。NS2、VP1和VP2的mRNA都发生剪接。  相似文献   

13.
Polyomaviruses are small nonenveloped particles with a circular double-stranded genome, approximately 5 kbp in size. The mammalian polyomaviruses mainly cause persistent subclinical infections in their natural nonimmunocompromised hosts. In contrast, the polyomaviruses of birds--avian polyomavirus (APV) and goose hemorrhagic polyomavirus (GHPV)--are the primary agents of acute and chronic disease with high mortality rates in young birds. Screening of field samples of diseased birds by consensus PCR revealed the presence of two novel polyomaviruses in the liver of an Eurasian bullfinch (Pyrrhula pyrrhula griseiventris) and in the spleen of a Eurasian jackdaw (Corvus monedula), tentatively designated as finch polyomavirus (FPyV) and crow polyomavirus (CPyV), respectively. The genomes of the viruses were amplified by using multiply primed rolling-circle amplification and cloned. Analysis of the FPyV and CPyV genome sequences revealed a close relationship to APV and GHPV, indicating the existence of a distinct avian group among the polyomaviruses. The main characteristics of this group are (i) involvement in fatal disease, (ii) the existence of an additional open reading frame in the 5' region of the late mRNAs, and (iii) a different manner of DNA binding of the large tumor antigen compared to that of the mammalian polyomaviruses.  相似文献   

14.
In order to screen for new polyomaviruses in samples derived from various animal species, degenerated PCR primer pairs were constructed. By using a nested PCR protocol, the sensitive detection of nine different polyomavirus genomes was demonstrated. The screening of field samples revealed the presence of a new polyomavirus, tentatively designated chimpanzee polyomavirus (ChPyV), in the feces of a juvenile chimpanzee (Pan troglodytes). Analysis of the region encoding the major capsid protein VP1 revealed a unique insertion in the EF loop of the protein and showed that ChPyV is a distinct virus related to the monkey polyomavirus B-lymphotropic polyomavirus and the human polyomavirus JC polyomavirus.  相似文献   

15.
Polyomaviruses are a family of small nonenveloped DNA viruses that infect birds and mammals. At least 7 nonhuman primate polyomaviruses that occur in macaques, African green monkeys, marmosets baboons, and chimpanzees have been described, as well as 4 polyomaviruses that occur in humans. Simian virus 40 (SV40), which infects macaques, was the first nonhuman primate polyomavirus identified as a contaminant of early polio vaccines. Primate polyomaviruses cause inapparent primary infections but persist in the host and can cause severe disease in situations of immunocompromise. This review describes the primate polyomaviruses, and the diseases associated with the viruses of macaques. In macaques, the greatest current concerns are the potential confounding of study results by polyomavirus infections and the zoonotic potential of SV40.Abbreviations: PML, progressive multifocal leukoencephalopathy; SV40, Simian virus 40Polyomaviruses were previously members of the family Papovaviridae, which included (and derived its name from) rabbit papilloma virus (pa), mouse polyoma virus (po), and simian vacuolating virus (va). Papovaviruses are nonenveloped viruses, with double-stranded circular DNA and an icosahedral capsule. Since the 1980s, studies of Simian virus 40 (SV40) and mouse polyomavirus have demonstrated that these viruses have smaller capsids (45 nm versus 50 nm), smaller genomes (5 kb versus 8 kb), and a different genomic organization than those of papillomaviruses. SV40 and mouse polyomavirus now form an independent family, Polyomaviridae.18More than 13 members of Polyomaviridae infect mammals and birds. The first polyomavirus was discovered in 1953 in mice28 and was so named because it caused tumors at multiple sites in neonatal mice. Indeed oncogenicity is a common feature of polyomaviruses, particularly tumor production in non-native hosts. Various members of the group transform cell lines and immortalize primary cell cultures as well as induce tumors in susceptible animals. SV40 was identified in 1960 in primary macaque kidney cell cultures, as a contaminant of polio vaccines.68 In 1971, the human polyomaviruses BKV23 and JCV54 were identified (both are named after the initials of the patients in which they were first recognized). JCV was discovered in the brain of a patient with progressive multifocal leukoencephalopathy, and BKV was found in the urine of a renal transplant patient. Recently, 2 additional polyomaviruses of the nasopharynx of humans, KIV and WUV, have been identified2,25 through the use of molecular techniques. KIV was found in nasopharyngeal samples from patients with respiratory disease, and WUV initially was detected in a child with pneumonia. KIV and WUV are closely related genetically and may form a new subfamily of polyomaviruses: their early coding regions (T antigens) are similar to those of other primate polyomaviruses, but their late regions (structural proteins) differ.7,25 Both KIV and WUV appear to be geographically widespread.The capsids of the polyomaviruses contain 3 structural proteins: VP1, the major capsid protein, and VP2 and VP3, which enclose a single molecule of viral DNA. The viruses also encode regulatory proteins, the T (tumor) antigens. SV40 and other primate polyomaviruses encode 2 T antigens, large T and small t, whereas mouse polyomavirus and some of the other family members have a third, middle T antigen. The T antigens of SV40, BKV, and JCV have about 75% amino-acid homology.58 The T antigen of SV40 is essential for initiation of viral DNA replication and promotes transformation and immortalization of host cells, partially through binding to and inhibiting tumor suppressor proteins p53, p107, p130 (pRb2), and pRb (reviewed in reference 10).  相似文献   

16.
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.  相似文献   

17.
18.
JC virus is a human polyomavirus that infects the majority of people without apparent symptoms in healthy subjects and it is the causative agent of progressive multifocal leucoencephalopathy (PML), a disorder following lytic infection of oligodendrocytes that mainly manifests itself under immunosuppressive conditions. A hallmark for JC virus isolated from PML-brain is the presence of rearrangements in the non-coding control region (NCCR) interspersed between the early and late genes on the viral genome. Such rearrangements are believed to originate from the archetype JC virus which is shed in urine by healthy subjects and PML patients. We applied next generation sequencing to explore the non-coding control region variability in urine of healthy subjects in search for JC virus quasispecies and rearrangements reminiscent of PML. For 61 viral shedders (out of a total of 254 healthy subjects) non-coding control region DNA and VP1 (major capsid protein) coding sequences were initially obtained by Sanger sequencing. Deletions between 1 and 28 nucleotides long appeared in ∼24.5% of the NCCR sequences while insertions were only detected in ∼3.3% of the samples. 454 pyrosequencing was applied on a subset of 54 urine samples demonstrating the existence of JC virus quasispecies in four subjects (∼7.4%). Hence, our results indicate that JC virus DNA in urine is not always restricted to one unique virus variant, but can be a mixture of naturally occurring variants (quasispecies) reflecting the susceptibility of the non-coding control region for genomic rearrangements in healthy individuals. Our findings pave the way to explore the presence of viral quasispecies and the altered viral tropism that might go along with it as a potential risk factor for opportunistic secondary infections such as PML.  相似文献   

19.
We report the identification of a novel polyomavirus present in respiratory secretions from human patients with symptoms of acute respiratory tract infection. The virus was initially detected in a nasopharyngeal aspirate from a 3-year-old child from Australia diagnosed with pneumonia. A random library was generated from nucleic acids extracted from the nasopharyngeal aspirate and analyzed by high throughput DNA sequencing. Multiple DNA fragments were cloned that possessed limited homology to known polyomaviruses. We subsequently sequenced the entire virus genome of 5,229 bp, henceforth referred to as WU virus, and found it to have genomic features characteristic of the family Polyomaviridae. The genome was predicted to encode small T antigen, large T antigen, and three capsid proteins: VP1, VP2, and VP3. Phylogenetic analysis clearly revealed that the WU virus was divergent from all known polyomaviruses. Screening of 2,135 patients with acute respiratory tract infections in Brisbane, Queensland, Australia, and St. Louis, Missouri, United States, using WU virus-specific PCR primers resulted in the detection of 43 additional specimens that contained WU virus. The presence of multiple instances of the virus in two continents suggests that this virus is geographically widespread in the human population and raises the possibility that the WU virus may be a human pathogen.  相似文献   

20.
Complete nucleotide sequence of mitochondrial genome (mitogenome) of the Catla catla (Ostariophysi: Cypriniformes: Cyprinidae) was determined in the present study. Its length is 16,594 bp and contains 13 protein coding genes, 22 transfer RNAs, two ribosomal RNAs and one non-coding control region. Most of the genes were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro) genes were encoded on the L-strand. The reading frames of two pair of genes overlapped: ATPase 8 with 6 and ND4L with ND4 by seven nucleotides each. The main non-coding region was 929 bp, with three conserved sequence blocks (CSB-I, CSB-II, and CSB-III) and an unusual simple sequence repeat, (TA)7. Phylogenetic analyses based on complete mitochondrial genome sequences were in favor of the traditional taxonomy of family Cyprinidae. In conclusion present mitogenome of Catla catla adds more information to our understanding of diversity and evolution of mitogenome in fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号