首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single or a group of somatic cells could give rise to the whole plant, which require hormones, or plant growth regulators. Although many studies have been done during past years, how hormones specify cell fate during in vitro organogenesis is still unknown. To uncover this mechanism, Arabidopsis somatic embryogenesis has been recognized as a model for studying in vitro plant organogenesis. In this paper, we showed that establishment of auxin gradients within embryonic callus is essential for inducing stem cell formation via PIN1 regulation. This study sheds new light on how hormone regulates stem cell formation during in vitro organogenesis.Key words: auxin gradients, PIN proteins, stem cell, somatic embryogenesis  相似文献   

2.
A plant regeneration system through multiple adventitious shoot differentiation from callus cultures has been established in slash pine (Pinus elliottii). Influences of seven different basal media on callus induction, adventitious shoot formation, and rooting were investigated. Among the different basal media, B5, SH, and TE proved to be suitable for callus induction and plantlet regeneration. Multiple adventitious shoot formation was obtained from callus cultures of slash pine on B5, SH, and TE media containing indole-3-butyric acid, N6-benzyladenine, and thidiazuron. Scanning electron microscopy demonstrated the early development of adventitious shoots derived from callus cultures. These results indicate that an efficient plant regeneration protocol for micropropagation of slash pine had been established. This protocol could be most useful for future studies on genetic transformation of slash pine.  相似文献   

3.
A rapid in vitro propagation system leading to formation of shoots from callus, roots, and plantlets was developed for Schizanthus hookeri Gill. (Solanaceae), an endemic Chilean plant. The genus Schizanthus is of particular interest due to the presence of several tropane alkaloids. So far, in vitro propagation of species of this genus has not been reported. Propagation of S. hookeri consisted of two phases, the first one for callus initiation and shoot formation and the second for rhizogenesis and plantlet regeneration. From a single callus that rapidly increased in cell biomass (from approximately 50 mg to approximately 460 mg/culture tube [25 x 130 mm] in 60 days) in the presence of 2.69 microM NAA and 2.22 microM BA, more than 10 shoots/callus explant were formed. From the latter, approx. twenty plantlets formed after 90-110 days shoot subculture in medium devoid of growth regulators that favored root formation. Ten alkaloids ranging from simple pyrrolidine derivatives to tropane esters derived from angelic, tiglic, senecioic or methylmesaconic acids were obtained from in vitro regenerated plantlets. One of them, 3alpha-methylmesaconyloxytropane, was not previously described. The same growth conditions, as well as other growth regulator levels tested, were required to induce callus and root formation in S. grahamii Gill. Root organogenesis occurred despite a high level of BA vs. NAA used, (i.e., 4.44 microM BA and 0.54 microM NAA); however no shoot formation was achieved. In the case of S. tricolor Grau et Gronbach, only callus formation was obtained in the presence of various growth regulators.  相似文献   

4.
Initiation, growth and cryopreservation of plant cell suspension cultures   总被引:1,自引:0,他引:1  
Methods described in this paper are confined to in vitro dedifferentiated plant cell suspension cultures, which are convenient for the large-scale production of fine chemicals in bioreactors and for the study of cellular and molecular processes, as they offer the advantages of a simplified model system for the study of plants when compared with plants themselves or differentiated plant tissue cultures. The commonly used methods of initiation of a callus from a plant and subsequent steps from callus to cell suspension culture are presented in the protocol. This is followed by three different techniques for subculturing (by weighing cells, pipetting and pouring cell suspension) and four methods for growth measurement (fresh- and dry-weight cells, dissimilation curve and cell volume after sedimentation). The advantages and disadvantages of the methods are discussed. Finally, we provide a two-step (controlled rate) freezing technique also known as the slow (equilibrium) freezing method for long-term storage, which has been applied successfully to a wide range of plant cell suspension cultures.  相似文献   

5.
贯叶连翘(Hypericum perforatum L.)是一种传统草药,在欧洲被广泛用于治疗抑郁症。其重要的活性成分,金丝桃素类物质储存在茎、叶和花瓣的分泌细胞团中。本文应用组织化学及电子显微镜技术,研究体外培养的贯叶连翘叶肉细胞脱分化产生愈伤组织以及细胞发育过程中金丝桃素类物质的积累、运输的情况,进一步探讨细胞的生长发育与次生代谢产物的关系。发现金丝桃素类物质产生于愈伤组织培养后期,在愈伤组织表面所形成的分泌细胞群中,最初在细胞质中形成,之后运输至液泡中积累,内质网参与了金丝桃素类物质的合成过程。这些结果为利用组织培养技术提高金丝桃素类物质含量提供了理论基础和依据。  相似文献   

6.
More than a century has passed since the first attempt to cultivate plant cells in vitro. During this time, plant cell cultures have become increasingly attractive and cost-effective alternatives to classical approaches for the mass production of plant-derived metabolites. Furthermore, plant cell culture is the only economically feasible way of producing some high-value metabolites (e.g., paclitaxel) from rare and/or threatened plants. This review summarizes recent advances in bioprocessing aspects of plant cell cultures, from callus culture to product formation, with particular emphasis on the development of suitable bioreactor configurations (e.g., disposable reactors) for plant cell culture-based processes; the optimization of bioreactor culture environments as a powerful means to improve yields; bioreactor operational modes (fed-batch, continuous, and perfusion); and biomonitoring approaches. Recent trends in downstream processing are also considered. This paper is dedicated to Prof. Dr. Mladenka P. Ilieva on the occasion of her 70th birthday.  相似文献   

7.
In vitro regeneration techniques have been optimized for seven strains and cultivars of sugar beet (Beta vulgaris L.) bred in Russia. The frequency of shoot regeneration from somatic cells and tissues of sugar beet varies from 10 to 97% depending on the explant type, culture-medium composition, and genotype. The in vitro regeneration potential has been estimated in plants with different genotypes. The effect of medium composition (phytohormones and carbohydrates) on the frequency of the formation of a morphogenic callus competent for plant regeneration has been determined. The effect of the types and concentrations of various cytokines (zeatin, kinetin, and 6-benzylaminopurine) on direct shoot regeneration from cotyledon nodes has been estimated. The culture-medium composition has been optimized for direct shoot regeneration from petioles. The effects of different concentrations of abscisic acid on the frequency of shoot regeneration from a morphogenic callus has been studied. Micropropagation has been used to obtain petiole explants and reproduce the shoots obtained by direct regeneration from cotyledonnodes, petioles, and calluses. Improved shoot-regeneration methods can be used for both agrobacterial and bioballistic genetic transformation of the sugar beet genotypes studied.  相似文献   

8.
9.
In vitro regeneration techniques have been optimized for seven strains and cultivars of sugar beet (Beta vulgaris L.) bred in Russia. The frequency of shoot regeneration from somatic cells and tissues of sugar beet varies from 10 to 97% depending on the explant type, culture-medium composition, and genotype. The in vitro regeneration potential has been estimated in plants with different genotypes. The effect of medium composition (phytohormones and carbohydrates) on the frequency of the formation of a morphogenic callus competent for plant regeneration has been determined. The effect of the types and concentrations of various cytokines (zeatin, kinetin, and 6-benzylaminopurine) on direct shoot regeneration from cotyledon nodes has been estimated. The culture-medium composition has been optimized for direct shoot regeneration from petioles. The effects of different concentrations of abscisic acid on the frequency of shoot regeneration from a morphogenic callus has been studied. Micropropagation has been used to obtain petiole explants and reproduce the shoots obtained by direct regeneration from cotyledon nodes, petioles, and calluses. Improved shoot-regeneration methods can be used for both agrobacterial and bioballistic genetic transformation of the sugar beet genotypes studied.  相似文献   

10.
Phytosulfokine (PSK), a 5-amino acid sulfated peptide that has been identified in conditioned medium of plant cell cultures, promotes cellular growth in vitro via binding to the membrane-localized PSK receptor. Here, we report that loss-of-function and gain-of-function mutations of the Arabidopsis (Arabidopsis thaliana) PSK receptor gene (AtPSKR1) alter cellular longevity and potential for growth without interfering with basic morphogenesis of plants. Although mutant pskr1-1 plants exhibit morphologically normal growth until 3 weeks after germination, individual pskr1-1 cells gradually lose their potential to form calluses as tissues mature. Shortly after a pskr1-1 callus forms, it loses potential for growth, resulting in formation of a smaller callus than the wild type. Leaves of pskr1-1 plants exhibit premature senescence after bolting. Leaves of AtPSKR1ox plants exhibit greater longevity and significantly greater potential for callus formation than leaves of wild-type plants, irrespective of their age. Calluses derived from AtPSKR1ox plants maintain their potential for growth longer than wild-type calluses. Combined with our finding that PSK precursor genes are more strongly expressed in mature plant parts than in immature plant parts, the available evidence indicates that PSK signaling affects cellular longevity and potential for growth and thereby exerts a pleiotropic effect on cultured tissue in response to environmental hormonal conditions.  相似文献   

11.
Auxin and the developing root of Arabidopsis thaliana   总被引:3,自引:0,他引:3  
The plant hormone auxin has long been known to play a crucial role in plant growth and development, but how it affects so many different processes has remained a mystery. Recent evidence from genetic and molecular studies has begun to reveal a possible mechanism for auxin action. In this article we will present an overview with specific emphasis on auxin's role in roots of Arabidopsis thaliana , focusing on cell division, elongation and differentiation.  相似文献   

12.
13.
The higher plant tumors are convenient models for studying the genetic control mechanism of plant cell division. There are two types of tumors: induced by the pathogenic factor and genetically determined. The development of both tumor types was related to the changes in cytokinin metabolism and/or signal transduction. In this work, the effect of synthetic cytokinins on the in vitro morphogenesis of cotyledon explants and isolated apices of radish seedlings was studied in several inbred radish lines (Raphanus sativus var. radicula Pers.) that differed in their in vivo tumorigenic properties. It was noted that root formation was stronger affected by kinetin while the treatment with thidiazuron tended to induce active callus formation in cotyledon explants of all inbred lines, except IIa. Growing with benzyladenine produced an intermediate effect as regards all morphogenetic responses. Cytokinin treatment of tumorigenic lines enhanced necrotic development in cotyledon explants. Culturing isolated apices of regenerated plants produced tumors anatomically and morphologically similar to those developing in vivo. Some of the lines nontumorigenic in vivo with enhanced formation of calli on cotyledon explants also developed tumors on apical explants in vitro when treated with cytokinins. These data suggest that different mechanisms for tumor formation operate in various radish lines. The radish lines are classified into three types: (1) necrotic lines with tumor formation putatively related to endogenous cytokinin level, (2) callus-forming lines with cell division enhanced in response to cytokinins, and (3) necrosis-and callus-forming lines with both mechanisms of tumor formation involved.  相似文献   

14.
Beautiful vavilovia, the closest species to the common now extinct ancestor of the whole tribe Fabeae holds significant taxonomical interest and also for breeding within this group of species, which includes the most cultivated leguminous pulses in the world. In spite of this, vavilovia has attracted very scarce research to date and is in danger of complete extinction. Thus, as a part of the research carried out by an informal international group of researchers from various countries, we report here various experiments for the development and exploitation of a range of biotechnology tools for vavilovia, ranging from standard in vitro propagation, to plant regeneration from explant-derived callus, and also from protoplasts. Plants were successfully recovered following propagation from nodes, and by regeneration through organogenesis from callus derived from internodes (which provided the best responses) and leaves. Also, protoplasts were isolated from leaves and stems from in vitro shoots and from callus derived from these two explants, with the latter undergoing sustained division. Subsequently, protoplasts isolated from internode callus proliferated and also underwent organogenesis coupled with whole plant recovery at a low frequency, while protoplasts from leaf callus origin followed both organogenesis and embryogenesis simultaneously but failed to yield viable plants. Flow cytometry assessments permitted to ascertain the genetic fidelity of both propagated and regenerated plants irrespectively of the source tissue from which they were derived (i.e., either callus from explants or from protoplasts). Finally, flow cytometry also permitted us to provide the first record on the relative nuclear DNA content and genome size for Vavilovia formosa.  相似文献   

15.
We obtained mature haploid (n = 24) ovary plants from in vitro cultured unpollinated young ovaries. These ovaries were induced to form embryoids which then developed into plants. The results obtained are summarized as follows: 1. The origin of development of the ovary haploid plants has been followed by light microscopy. Embryological abservations revealed that there are two ways of plantlet production: (1) Ovary haploid plant was derived from the macrospore without an intervening callus phase. (2) Ovary haploid plant was derived directly from the egg cell of mature embryo sac. In addition, Callus derived haploid plant was also obtained from the base and the tip of a bud of the above mentioned haploid plantlet. In same medium embryoids was derived from callus. Finally, plantlet was developed. 2. The exogenous hormones are necessary for high induction frequency of embryoid from unpollinated isolated young ovary, but these are not definitely necessary for induction of embryonic callus to form embryoids which then developed into plant. 3. The induction frequency of embryoid from in vitro cultured ovary and embryonic callus significantly increased when the concentration of thiamine, pyridoxine, ascorbic acid, nicotinic acid, inositol and folic acid was raised.  相似文献   

16.
The relative growth rate of plant cells in vitro is considerably affected by initial cell density. This troublesome effect has interfered with the establishment of efficient plant cell culture systems, especially when only a small number of cells are expected to survive, such as in the genetic transformation of cells under antibiotic selection. To improve the recovery of antibiotic-resistant cells, we examined the use of the peptide plant hormone phytosulfokine (PSK), which has been shown to promote cellular growth and development in vitro. The addition of PSK to selective media increased the recovery of transformed callus from Agrobacterium-infected carrot hypocotyl explants from 7% to 39%, which is more than a fivefold improvement over the control. Most calluses developed into normal plantlets with cotyledons and primary roots and, eventually, formed foliage leaves. Thus, chemical nursing using PSK shows promise as a tool for basic research in plant biology and biotechnological applications.Abbreviations BAP 6-Benzylaminopurine - GUS -Glucuronidase - NAA -Naphthaleneacetic acid - nptII Neomycin phosphotransferase II - PSK Phytosulfokine - X-gluc 5-Bromo-4-chloro-3-indoyl glucuronide  相似文献   

17.
During plant growth and development, the phytohormone auxin induces a wide array of changes that include cell division, cell expansion, cell differentiation, and organ initiation. It has been suggested that the actin cytoskeleton plays an active role in the elaboration of these responses by directing specific changes in cell morphology and cytoarchitecture. Here we demonstrate that the promoter and the protein product of one of the Arabidopsis vegetative actin genes, ACT7, are rapidly and strongly induced in response to exogenous auxin in the cultured tissues of Arabidopsis. Homozygous act7-1 mutant plants were slow to produce callus tissue in response to hormones, and the mutant callus contained at least two to three times lower levels of ACT7 protein than did the wild-type callus. On the other hand, a null mutation in ACT2, another vegetative actin gene, did not significantly affect callus formation from leaf or root tissue. Complementation of the act7-1 mutants with the ACT7 genomic sequence restored their ability to produce callus at rates similar to those of wild-type plants, confirming that the ACT7 gene is required for callus formation. Immunolabeling of callus tissue with actin subclass-specific antibodies revealed that the predominant ACT7 is coexpressed with the other actin proteins. We suggest that the coexpression, and probably the copolymerization, of the abundant ACT7 with the other actin isovariants in cultured cells may facilitate isovariant dynamics well suited for cellular responses to external stimuli such as hormones.  相似文献   

18.
An in vitro culture system leading to the formation of callus and plant regeneration, starting from nodal sections and shoot tips, was developed for Solidago chilensis (Asteraceae). The content of the gastroprotective diterpene solidagenone as well as the phenolics chlorogenic acid (CA) and rutin was determined either in rhizomes from wild growing plants and in callus and in in vitro regenerated plantlets by analytical HPLC. Additionally, total phenolic and flavonoid content was assessed in plant samples, callus and cell suspensions. In terms of dry starting material, the percentual solidagenone content in nine S. chilensis samples ranged from 0.5-3.5% for rhizomes from wild growing plants, 0.1-0.3% for callus and 0.3% for an in vitro regenerated plantlet, respectively. The highest solidagenone contents were found in the wild plant during the late summer in the months of March and April (3.5-2.2%) while highest values for chlorogenic acid (0.5%) and rutin (0.4%) were detected in May, before senescence. The callus tissue and cell suspensions contained some 1.8-2.0 and 1.2% of total phenolics, respectively. CA was the main phenolic in the cell suspension while only traces were found in the callus. Rutin was not detected in the callus nor cell culture.  相似文献   

19.
Callus induction,which results in fate transition in plant cells,is considered as the first and key step for plant regeneration.This process can be stimulated in different tissues by a callus-inducing medium(CIM),which contains a high concentration of phytohormone auxin.Although a few key regulators for callus induction have been identified,the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation.Here,we find that high auxin induces callus ...  相似文献   

20.
The present paper reports the establishment of rice cell suspension culture system, including callus induction and proliferation, isolation of single cells and small aggregates, cell suspension culture and callus re-formation, as well as regeneration of plantlets. The results have been obtained as follows: 1. The compositions of the different media used for callus induction, callus proliferation, cell suspension and plant regeneration are summarized in Table 1.2. Two kinds of disifectants, mercuric chloride and sodium hypochlorite, were used for surface sterilization of brown rice. The percentage of callus formation and callus yields were much higher when sodium hypochlorite was used (Fig. 3). We suggest that the disinfactant is one of the important factors that affect callus formed at the initial stage has an influence upon subsequent isolation of cells and suspension culture and even plant regeneration. 3. Table 3 shows that addition of yeast extract to the medium improves callus yield greatly and the efficiency of callus formation to a lesser extent. 4. Both medium Ⅱ (modified B5 medium) and N6 medium were suitable for cell suspension culture, but medium II was more effective for cell growth and callus re-formation (Fig. 4 and Table 4). 5. Effect of 2, 4-D on cell growth was tested at the concentration range among 0, 10-6, 10-5, 10-4 to 10-3 M. The results indicated that 10-5 M of 2,4-D was most effective for induction of rice callus. It has also been found that absence of 2,4-D increased callus re-formation in suspension culture, but no plant regeneration was observed. 6. By using 7% sucrose in differentiation medium, for all the three varieties, the plant regeneration frequency was raised up to 3 or 4 times than those of the 3% ones (Table 6). Occurrence of albino plants is often reported as one of the problems in rice anther culture. It is, however, no problem in seed-derived rice cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号