首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
3.
目的:研究曲格列酮对THP-1巨噬细胞源性泡沫细胞ABCA1表达及胆固醇流出的影响。方法:采用液体闪烁计数法测定曲格列酮处理后THP-1巨噬细胞源性泡沫细胞胆固醇流出。用RT-PCR和Western blotting的方法检测曲格列酮处理后THP-1巨噬细胞源性泡沫细胞ABCA1 mRNA水平和蛋白质水平的变化。结果:经曲格列酮处理后,THP-1巨噬细胞源性泡沫细胞的胆固醇流出具有时间依赖性的增加,从0h的1.82%上升到24h的7.61%。在mRNA水平和蛋白质水平ABCA1也均随着曲格列酮作用时间增加而表达上调。结论:曲格列酮能增加THP-1巨噬细胞源性泡沫细胞ABCA1表达和胆固醇流出。  相似文献   

4.
5.
Obesity and diabetes are associated with hepatic triglyceride overproduction and hypertriglyceridemia. Recent studies have found that the cellular trafficking receptor sortilin 1 (Sort1) inhibits hepatic apolipoprotein B secretion and reduces plasma lipid levels in mice, and its hepatic expression was negatively associated with plasma lipids in humans. This study investigated the regulation of hepatic Sort1 under diabetic conditions and by lipid-lowering fish oil and fenofibrate. Results showed that hepatic Sort1 protein, but not mRNA, was markedly lower in Western diet-fed mice. Knockdown of hepatic Sort1 increased plasma triglyceride in mice. Feeding mice a fish oil-enriched diet completely restored hepatic Sort1 levels in Western diet-fed mice. Fenofibrate also restored hepatic Sort1 protein levels in Western diet-fed wild type mice, but not in peroxisome proliferator-activated receptor α (PPARα) knock-out mice. PPARα ligands did not induce Sort1 in hepatocytes in vitro. Instead, fish oil and fenofibrate reduced circulating and hepatic fatty acids in mice, and n-3 polyunsaturated fatty acids prevented palmitate inhibition of Sort1 protein in HepG2 cells. LC/MS/MS analysis revealed that Sort1 phosphorylation at serine 793 was increased in obese mice and in palmitate-treated HepG2 cells. Mutations that abolished phosphorylation at Ser-793 increased Sort1 stability and prevented palmitate inhibition of Sort1 ubiquitination and degradation in HepG2 cells. In summary, therapeutic strategies that prevent posttranslational hepatic Sort1 down-regulation in obesity and diabetes may be beneficial in improving dyslipidemia.  相似文献   

6.
ATP-binding cassette transporter A1 (ABCA1) mediates the rate-limiting step in high density lipoprotein (HDL) particle formation, and its expression is regulated primarily by oxysterol-dependent activation of liver X receptors. We previously reported that ABCA1 expression and HDL formation are impaired in the lysosomal cholesterol storage disorder Niemann-Pick disease type C1 and that plasma HDL-C is low in the majority of Niemann-Pick disease type C patients. Here, we show that ABCA1 regulation and activity are also impaired in cholesteryl ester storage disease (CESD), caused by mutations in the LIPA gene that result in less than 5% of normal lysosomal acid lipase (LAL) activity. Fibroblasts from patients with CESD showed impaired up-regulation of ABCA1 in response to low density lipoprotein (LDL) loading, reduced phospholipid and cholesterol efflux to apolipoprotein A-I, and reduced α-HDL particle formation. Treatment of normal fibroblasts with chloroquine to inhibit LAL activity reduced ABCA1 expression and activity, similar to that of CESD cells. Liver X receptor agonist treatment of CESD cells corrected ABCA1 expression but failed to correct LDL cholesteryl ester hydrolysis and cholesterol efflux to apoA-I. LDL-induced production of 27-hydroxycholesterol was reduced in CESD compared with normal fibroblasts. Treatment with conditioned medium containing LAL from normal fibroblasts or with recombinant human LAL rescued ABCA1 expression, apoA-I-mediated cholesterol efflux, HDL particle formation, and production of 27-hydroxycholesterol by CESD cells. These results provide further evidence that the rate of release of cholesterol from late endosomes/lysosomes is a critical regulator of ABCA1 expression and activity, and an explanation for the hypoalphalipoproteinemia seen in CESD patients.  相似文献   

7.
The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.  相似文献   

8.
9.
Diabetes and insulin resistance increase the risk of cardiovascular disease caused by atherosclerosis through mechanisms that are poorly understood. Lipid-loaded macrophages are key contributors to all stages of atherosclerosis. We have recently shown that diabetes associated with increased plasma lipids reduces cholesterol efflux and levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in mouse macrophages, which likely contributes to macrophage lipid accumulation in diabetes. Furthermore, we and others have shown that unsaturated fatty acids reduce ABCA1-mediated cholesterol efflux, and that this effect is mediated by the acyl-CoA derivatives of the fatty acids. We therefore investigated whether acyl-CoA synthetase 1 (ACSL1), a key enzyme mediating acyl-CoA synthesis in macrophages, could directly influence ABCA1 levels and cholesterol efflux in these cells. Mouse macrophages deficient in ACSL1 exhibited reduced sensitivity to oleate- and linoleate-mediated ABCA1 degradation, which resulted in increased ABCA1 levels and increased apolipoprotein A-I-dependent cholesterol efflux in the presence of these fatty acids, as compared with wildtype mouse macrophages. Conversely, overexpression of ACSL1 resulted in reduced ABCA1 levels and reduced cholesterol efflux in the presence of unsaturated fatty acids. Thus, the reduced ABCA1 and cholesterol efflux in macrophages subjected to conditions of diabetes and elevated fatty load may, at least in part, be mediated by ACSL1. These observations raise the possibility that ABCA1 levels could be increased by inhibition of acyl-CoA synthetase activity in vivo. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号