首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating the interactions between nanoscale materials and microorganisms is crucial to provide a comprehensive, proactive understanding of nanomaterial toxicity and explore the potential for novel applications. It is well known that nanomaterial behavior is governed by the size and composition of the particles, though the effects of small differences in size toward biological cells have not been well investigated. Palladium nanoparticles (Pd NPs) have gained significant interest as catalysts for important carbon-carbon and carbon-heteroatom reactions and are increasingly used in the chemical industry, however, few other applications of Pd NPs have been investigated. In the present study, we examined the antimicrobial capacity of Pd NPs, which provides both an indication of their usefulness as target antimicrobial compounds, as well as their potency as potential environmental pollutants. We synthesized Pd NPs of three different well-constrained sizes, 2.0±0.1 nm, 2.5±0.2 nm and 3.1±0.2 nm. We examined the inhibitory effects of the Pd NPs and Pd2+ ions toward gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) bacterial cultures throughout a 24 hour period. Inhibitory growth effects of six concentrations of Pd NPs and Pd2+ ions (2.5×10−4, 10−5, 10−6, 10−7, 10−8, and 10−9 M) were examined. Our results indicate that Pd NPs are generally much more inhibitory toward S. aureus than toward E. coli, though all sizes are toxic at ≥10−5 M to both organisms. We observed a significant difference in size-dependence of antimicrobial activity, which differed based on the microorganism tested. Our work shows that Pd NPs are highly antimicrobial, and that fine-scale (<1 nm) differences in size can alter antimicrobial activity.  相似文献   

2.

Background

We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.

Methods/Principal Findings

Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.

Conclusion

We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer.  相似文献   

3.
Synthesis of gold nanoparticles was carried out using Pongammia pinnata (pongam) leaf extract and their anticancer and antimycobacterial activities were studied. Gold nanoparticle formation was confirmed by UV–vis, XRD and HR-TEM. The anticancer efficacies of the biogenic gold nanoparticles were analyzed using cytotoxicity, cell morphology analysis, oxidative DNA damage, apoptosis detection and toxicity studies. Biogenic gold nanoparticles inhibited breast cancer cell line (MCF-7) proliferation with an efficacy of IC50 of 1.85 μg/mL. The antimycobacterial potential of the biogenic gold nanoparticles was screened against M. tuberculosis by Luciferase Reporter Phage (LRP) assay. The gold nanoparticles showed inhibition against sensitive M. tuberculosis with the minimum inhibitory concentration (MIC) of 10 μg/mL whereas no inhibition was found against the rifampicin resistant M. tuberculosis.  相似文献   

4.
With the rapid development of nanotechnology and increasingly broad bio-application of engineered nanomaterials, their biohazards have become a serious public concern. It is believed that the chemical nature, particle size, morphology, and surface chemistry of nanomaterials are key parameters that influence their toxicity. Although cultured cells have been widely used to evaluate nanomaterial toxicity, it remains unclear whether the passage of these cells affects the evaluation results. In the present study, Ba/F3 cells transfected with the BCR-ABL gene were subcultured to study the effect of passage number on cell stability and their cellular responses upon exposure to nanomaterials. The results demonstrated that proliferation, cellular senescence, BCR-ABL gene expression, cell cycle and apoptosis were stable across multiple passages. Senescence and BCR-ABL gene expression of cells from different passage cells were unchanged when treated with silver nanoparticles (AgNPs). In addition, the cells at multiple passage numbers were all arrested in the G2/M phase and apoptosis was induced by the AgNPs. These nanoparticles could enter cells via endocytosis and localize in the endosomes, which were also not influenced by passage number. These data suggest that short-term passage would not affect cultured cell stability and toxicity assessment using these cells would be consistent when maintained appropriately.  相似文献   

5.
Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2–x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.  相似文献   

6.
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape 1-5. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications 6. Gold is particularly used because of its low toxicity 7-9. A property of metal nano-colloids is that they can have a strong surface plasmon resonance 10. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal 11, 12.We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles 13-15 or nanostars 16. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids 17-22. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.  相似文献   

7.
Dimeric quaternary alkylammonium salts possess a favourable surface and antimicrobial activity. In this paper we describe synthesis, spectroscopic analysis, surface and antimicrobial activity as well as biodegradability of polymethylene-α,ω-bis(N,N-dialkyl-N-deoxy-D-glucitolammonium iodides), a new group of dimeric quaternary ammonium salts. This new group of gemini surfactants can be produced from chemicals which come from renewable sources. The structure of products has been determined by the FTIR and 1H and 13C NMR spectroscopy. The biodegradability, surface activity and antimicrobial efficacy against Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger and Penicillium chrysogenum were determined. The influence of the number of alkyl chains and their lengths on surface and antimicrobial properties has been shown. In general, dimeric quaternary alkyldeoxy-D-glucitolammonium salts with long alkyl substituents show favourable surface properties and an excellent antimicrobial activity.  相似文献   

8.
BackgroundNanoplastics in the environment can enter the human body through gastrointestinal intake, dermal contact, and pulmonary inhalation, posing a threat to human health. Protein molecules in body fluids will quickly adsorb on the surfaces of the nanoplastics, forming a protein corona, which has implications for the interaction of the nanoplastics with cells and the metabolic pathways of the nanoplastic within cells. For years, practical tools such as dynamic light scattering, transmission electron microscopy, and liquid chromatography have been developed to understand the protein corona of nanoparticles (NPs), either in vitro or in cellular or molecular level. However, an integrated approach to understand the nanoparticles-protein corona is still lacking.MethodsUsing the most frequently observed environmental nanoplastics, polystyrene nanoplastics (PS), as a standard, we established an integrative structural characterization platform, a biophysical and biochemical evaluation method to investigate the effect of surface charge on protein corona composition. The cellular and molecular mechanisms were also explored through in vitro cellular experiments.ResultsThe first integrative method for characterizing biological properties of NPs-protein corona has been established. This method comprehensively covers the critical aspects to understand NPs-protein corona interactions, from structure to function.ConclusionsThe integrative method for nanoplastics microstructure characterization can be applied to the structural characterization of nanoparticles in nanoscale, which is of universal significance from in vitro characterization to cellular experiments and then to molecular mechanism studies.General significanceThis strategy has high reliability and repeatability and can be applied both in environment and nanomedicine safety assessment.  相似文献   

9.
Bio-directed synthesis of metal nanoparticles is gaining importance due to their biocompatibility, low toxicity and eco-friendly nature. We used sweet sorghum syrup for a facile and cost-effective green synthesis of silver glyconanoparticles. Silver nanoparticles were formed due to reduction of silver ions when silver nitrate solution was treated with sorghum syrup solutions of different pH values. The nanoparticles were characterized by UV–vis, TEM (transmission electron microscopy), DLS (dynamic light scattering), EDAX (energy dispersive X-ray spectroscopy), FT-IR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction spectroscopy). The silver glyconanoparticles exhibited a characteristic surface plasmon resonance around 385 nm. At pH 8.5, the nanoparticles were mono-dispersed and spherical in shape with average particle size of 11.2 nm. The XRD and SAED studies suggested that the nanoparticles were crystalline in nature. EDAX analysis showed the presence of elemental silver signal in the synthesized glyconanoparticles. FT-IR analysis revealed that glucose, fructose and sucrose present in sorghum syrup acted as capping ligands. Silver glyconanoparticles prepared at pH 8.5 had a zeta potential of ?28.9 mV and were anionic charged. They exhibited strong antimicrobial activity against Gram-positive, Gram-negative and different Candida species at MIC values ranging between 2 and 32 μg ml?1. This is first report on sweet sorghum syrup sugars-derived silver glyconanoparticles with antimicrobial property.  相似文献   

10.
To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles.  相似文献   

11.
Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetra id="spar0060">Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetic industries. In the present study, we have optimized a method for biogenic synthesis of gold nanoparticles (AuNPs) from Cladosporium cladosporioides, an endophytic fungus of the seaweed, Sargassumwightii. The identity of the fungus was established by the 18 s rRNA and ITS sequence. The AuNPs synthesized using C. cladosporioides were characterized by UV–vis spectrophotometer, Field Emission Scanning Electron Microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Dynamic light scattering, Atomic force microscopy, and Energy dispersive X-ray spectroscopic studies. They were tested for free radical scavenging activity (DPPH and FRAP assay) and antimicrobial activity against a panel of pathogenic microorganisms. The AuNps were within 100 nm as confirmed by the above methods. An attempt was made to understand the mechanism of the gold nanoparticle synthesis using the fungal extract. The present study shows the involvement of NADPH-dependent reductase and phenolic compounds in the bioreduction of the gold metal salts to nanoparticles. The AuNPs showed significant antioxidant as well as the antimicrobial activity. Hence, this study has shown a great potential for the development of a cost effective antimicrobial treatment utilizing biogenic gold nanoparticles.  相似文献   

12.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

13.

Background

Zero-valent iron nanoparticles (ZVI NPs) have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown.

Results

In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407) but not against two gram-negative strains (Escherichia coli K12 and ATCC11634). Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI) staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm) concentration of ZVI NPs.

Conclusion

Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.
  相似文献   

14.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

15.
Bovine serum albumin antibodies (aBSA) have been screened from whole leporine anti serum on a biophotonic array. The array was initially printed with seed gold nanoparticles into a 96-spot configuration, and 130-nm gold nanoparticles were synthesised in situ on the surface of each spot. The gold nanoparticle surface was then functionalized with the proteins bovine serum albumin (BSA), fibrinogen, and immunoglobulin G (IgG) and with the amino acid glycine. The concentration of aBSA in the whole serum was determined using a kinetic analysis of the time-dependent light scattering from the nanoparticles. The aBSA-BSA kinetic parameters derived from the array are ka = (1.3 ± 0.3) × 105 M−1 s−1, kd = (4 ± 2) × 10−4 s−1, and KD = 3 nM, which compare favorably with those from continuous gold surfaces. The ultimate sensitivity of the array reader to the bulk refractive index (RI) is 1 × 10−4 refractive index units (RIU), corresponding to 1 μg ml−1 for aBSA. The nanoparticles appear to be more sensitive than the continuous gold surface to the aBSA binding event from whole serum, and this is interpreted in terms of the difference in RI contrast in the plasmon fields.  相似文献   

16.
For the soil nitrogen-fixing bacterium Azospirillum brasilense, the ability to reduce [AuCl4]? and to form gold nanoparticles (GNPs) has been demonstrated, with the appearance of a mauve tint of the culture. To validate the shapes and chemical nature of nanoparticles, transmission electron microscopy (TEM) and X-ray fluorescence analysis were used. For the widely studied agriculturally important wild-type strains A. brasilense Sp7 and Sp245, GNPs formed after 10 days of incubation of cell biomass with 0.25 mM [AuCl4]? were shown (using TEM) to be mainly of spherical form (5 to 20 nm in diameter), with rare occasional triangles. In the course of cultivation with [AuCl4]?, after 5 days, a mauve tint was already visible for cells of strain Sp245.5, after 6 days for Sp245 and after 10 days for Sp7. Thus, for the mutant strain Sp245.5 (which has significant differences in the structure and composition of cell-surface polysaccharides as compared with Sp245), a more rapid formation of GNPs was observed. Moreover, their TEM images (also obtained after 10 days) showed different shapes: nano-sized spheres, triangles, hexagons and rods, as well as larger round-shaped flower-like nanoparticles about 100 nm in size. Since by the time of GNP formation in our experiments the cells were found to be already not viable, this confirms the dominating role of cell surface structure and chemical composition in shaping the GNPs formed in the course of [AuCl4]? reduction to Au0. This finding may be useful for understanding the natural biogeochemical mechanisms of gold reduction and formation of GNPs involving microorganisms. The data obtained may also help in developing protocols for environmentally friendly synthesis of nanoparticles and possible use of bacterial cells with modified surface structure and composition for their fabrication.  相似文献   

17.
The current study aimed at developing gold nanoparticles (AuNPs) using the aqueous extract of the medicinal plant Commiphora wightii. The phytosynthesized gold nanoparticles (Cw@AuNPs) were evaluated for their anticancer activity against MCF-7 breast cancer cell model. The formation of AuNPs by Commiphora wightii leaf extract was confirmed by UV–vis spectra where their surface plasmon resonance was found at 533 nm. Further characterization of Cw@AuNPs was done by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, and fourier-transform infrared spectroscopy (FTIR) analysis. In vitro anticancer potential of thus obtained AuNPs was evaluated against MCF-7 and where the IC50 was found to be 66.11 μg/mL Further, apoptotic studies were carried out using ethidium bromide dual staining, DNA fragmentation, comet assay, and flow cytometry studies. Results revealed that Cw@AuNPs at higher concentration significantly increased the apoptotic cells when compared to control cells. Cell cycle analysis of MCF-7 cells confirmed the cell cycle arrest at G2/M phase. These results demonstrate that the biosynthesized Cw@AuNPs appear to be promising for therapeutical applications against breast cancer.  相似文献   

18.
Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV–vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health.  相似文献   

19.
Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.  相似文献   

20.
Alstonia scholaris is one of the most important medicinal plants and herein, we present the synthesis of zinc oxide nanoparticles using the bark extract of Alstonia scholaris, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 mL of 1 mM zinc nitrate aqueous solution with 10 mL of 10% bark extract. The formation of Alstonia scholaris bark extract mediated zinc oxide nanoparticles was confirmed by UV–visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 430 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract is responsible for the reduction and stabilization of the ZnONPs. The crystalline phase of the nanocrystals was determined by XRD analysis and morphology was studied using transmission electron microscopy (TEM). The hydrodynamic diameter (26.2 nm) and a positive zeta potential (43.0 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of Alstonia scholaris ZnONPs was evaluated (in-vitro) using disc diffusion method against fungi, Gram-negative and Gram-positive bacteria which were isolated from the biofilm formed in drinking water PVC pipelines. The results obtained suggested that ZnO nanoparticles exhibit a good anti-fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 50 ppm). Further, the toxicity of biosynthesized ZnONPs was tested against Alstonia scholaris to evaluate the cytotoxic effect that displayed LC50 value of 95% confidence intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号