首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to pathogen infection, the host innate immune system activates microbial killing pathways and cellular stress pathways that need to be balanced because insufficient or excessive immune responses have deleterious consequences. Recent studies demonstrate that two G protein-coupled receptors (GPCRs) in the nervous system of Caenorhabditis elegans control immune homeostasis. To investigate further how GPCR signaling controls immune homeostasis at the organismal level, we studied arrestin-1 (ARR-1), which is the only GPCR adaptor protein in C. elegans. The results indicate that ARR-1 is required for GPCR signaling in ASH, ASI, AQR, PQR, and URX neurons, which control the unfolded protein response and a p38 mitogen-activated protein kinase signaling pathway required for innate immunity. ARR-1 activity also controlled immunity through ADF chemosensory and AFD thermosensory neurons that regulate longevity. Furthermore, we found that although ARR-1 played a key role in the control of immunity by AFD thermosensory neurons, it did not control longevity through these cells. However, ARR-1 partially controlled longevity through ADF neurons.  相似文献   

2.
3.
Cystathionine (R-S-(2-amino-2-carboxyethyl)-l-homocysteine) is a non-proteinogenic thioether containing amino acid. In mammals, cystathionine is formed as an intermediate of the transsulfuration pathway by the condensation of serine and homocysteine (Hcy) in a reaction catalyzed by cystathionine β-synthase (CBS). Cystathionine is subsequently converted to cysteine plus ammonia and α-ketobutyrate by the action of cystathionine γ-lyase (CGL). Pathogenic mutations in CBS result in CBS-deficient homocystinuria (HCU) which, if untreated, results in mental retardation, thromboembolic complications and connective tissue disorders. Currently there is no known function for cystathionine other than serving as an intermediate in transsulfuration and to date, the possible contribution of the abolition of cystathionine synthesis to pathogenesis in HCU has not been investigated. Using both mouse and cell-culture models, we have found that cystathionine is capable of blocking the induction of hepatic steatosis and kidney injury, acute tubular necrosis, and apoptotic cell death by the endoplasmic reticulum stress inducing agent tunicamycin. Northern and Western blotting analysis indicate that the protective effects of cystathionine occur without any obvious alteration of the induction of the unfolded protein response. Our data constitute the first experimental evidence that the abolition of cystathionine synthesis may contribute to the pathology of HCU and that this compound has therapeutic potential for disease states where ER stress is implicated as a primary initiating pathogenic factor.  相似文献   

4.
Missense mutations in the proteolipid protein 1 (PLP1) gene cause a wide spectrum of hypomyelinating disorders, from mild spastic paraplegia type 2 to severe Pelizaeus-Merzbacher disease (PMD). Mutant PLP1 accumulates in the endoplasmic reticulum (ER) and induces ER stress. However, the link between the clinical severity of PMD and the cellular response induced by mutant PLP1 remains largely unknown. Accumulation of misfolded proteins in the ER generally leads to up-regulation of ER chaperones to alleviate ER stress. Here, we found that expression of the PLP1-A243V mutant, which causes severe disease, depletes some ER chaperones with a KDEL (Lys-Asp-Glu-Leu) motif, in HeLa cells, MO3.13 oligodendrocytic cells, and primary oligodendrocytes. The same PLP1 mutant also induces fragmentation of the Golgi apparatus (GA). These organelle changes are less prominent in cells with milder disease-associated PLP1 mutants. Similar changes are also observed in cells expressing another disease-causing gene that triggers ER stress, as well as in cells treated with brefeldin A, which induces ER stress and GA fragmentation by inhibiting GA to ER trafficking. We also found that mutant PLP1 disturbs localization of the KDEL receptor, which transports the chaperones with the KDEL motif from the GA to the ER. These data show that PLP1 mutants inhibit GA to ER trafficking, which reduces the supply of ER chaperones and induces GA fragmentation. We propose that depletion of ER chaperones and GA fragmentation induced by mutant misfolded proteins contribute to the pathogenesis of inherited ER stress-related diseases and affect the disease severity.  相似文献   

5.
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.  相似文献   

6.
7.
8.
The effects of Heligmosomoides bakeri infection on the course of a concurrent Cryptosporidium parvum infection were studied in C57BL/6 mice. Mice were initially infected with 80 L3 of H. bakeri and then challenged with 104 oocysts of C. parvum, administered during the patent period of the nematode infection (28 day post H. bakeri infection). The number of C. parvum oocysts excreted in the feces and the number of adult H. bakeri in the small intestine were monitored during the experiment. Concurrent H. bakeri infection resulted in a prolonged course of infection with C. parvum. The intensities of both parasite infections were higher in co-infections. We also investigated the cellular immune response at 14 and 42 days post infection C. parvum. During infection with C. parvum there was an increase in production of IFN-γ and IL-12 but co-infection with H. bakeri inhibited IFN-γ secretion. The present study is the first to demonstrate that infection with H. bakeri markedly exacerbates the intensity of a concurrent C. parvum infection in laboratory mice and also affects immune effectors mechanisms in co-infection with H. bakeri.  相似文献   

9.
Loss-of-function mutations in EIF2AK3, encoding the pancreatic endoplasmic reticulum (ER) kinase, PERK, are associated with dysfunction of the endocrine pancreas and diabetes. However, to date it has not been possible to uncouple the long term developmental effects of PERK deficiency from sensitization to physiological levels of ER unfolded protein stress upon interruption of PERK modulation of protein synthesis rates. Here, we report that a selective PERK inhibitor acutely deregulates protein synthesis in freshly isolated islets of Langerhans, across a range of glucose concentrations. Acute loss of the PERK-mediated strand of the unfolded protein response leads to rapid accumulation of misfolded pro-insulin in cultured beta cells and is associated with a kinetic defect in pro-insulin processing. These in vitro observations uncouple the latent role of PERK in beta cell development from the regulation of unfolded protein flux through the ER and attest to the importance of the latter in beta cell proteostasis.  相似文献   

10.
目的:初步探讨AMPK在内质网应激所致COPD大鼠肺泡上皮细胞凋亡中所起的作用及机制。方法:实验分三组:对照组,COPD模型组,AICAR干预组,以香烟烟雾烟熏加气管内滴注脂多糖方法构建COPD大鼠模型,取大鼠肺组织行HE染色病理观察,免疫组化,western blot检测p-AMPK/AMPK,ORP150,caspase-3及CHOP表达,TUNEL法检测各组凋亡情况。结果:病理HE染色提示模型组大量炎症细胞浸润,肺大疱形成,支气管壁发生狭窄;AICAR干预组炎症细胞较模型组减少。与正常对照组相比,免疫组化及western blot均提示模型组中p-AMPK和ORP150蛋白表达含量增强,差异有统计学意义(P0.05)。而AICAR干预组中p-AMPK/AMPK及ORP150蛋白表达较模型组明显上升,差异有统计学意义(P0.05)。内质网应激相关凋亡指标CHOP及caspase-3的表达在模型组明显增强,较正常组比较差异有显著性(P0.05),而AICAR组中凋亡指标较模型组明显下调。结论:AMPK可以保护肺泡上皮细胞免于香烟烟雾所致内质网应激凋亡,且有可能通过增加ORP150来实现其保护作用。  相似文献   

11.
Cryptosporidium parvum oocysts were isolated from a child suffering from acute gastroenteritis and successfully passaged in a calf and mice (designated hereafter SNU-H1) in the Republic of Korea; its molecular genotype has been analyzed. The GAG microsatellite region was amplified by a polymerase chain reaction (PCR), with a 238 base pair product, which is commonly displayed in C. parvum. The isolate was shown to be a mixture of the genotypes 1 (anthroponotic) and 2 (zoonotic). To study its infectivity in animals, 2 calves and 3 strains of mice were infected with the SNU-H1; in these animals, the propagation of both genotypes was successful. In immunosuppressed (ImSP) BALB/c and C57BL/6 mice the number of oocysts decreased after day 10 post-infection (PI); but in ImSP ICR mice, they remained constant until day 27 PI. The results show that both the C. parvum genotypes 1 and 2 can be propagated in calves and ImSP mice.  相似文献   

12.
Ciliopathies, a class of rare genetic disorders, present often with retinal degeneration caused by protein transport defects between the inner segment and the outer segment of the photoreceptors. Bardet-Biedl syndrome is one such ciliopathy, genetically heterogeneous with 17 BBS genes identified to date, presenting early onset retinitis pigmentosa. By investigating BBS12-deprived retinal explants and the Bbs12−/− murine model, we show that the impaired intraciliary transport results in protein retention in the endoplasmic reticulum. The protein overload activates a proapoptotic unfolded protein response leading to a specific Caspase12-mediated death of the photoreceptors. Having identified a therapeutic window in the early postnatal retinal development and through optimized pharmacological modulation of the unfolded protein response, combining three specific compounds, namely valproic acid, guanabenz, and a specific Caspase12 inhibitor, achieved efficient photoreceptor protection, thereby maintaining light detection ability in vivo.  相似文献   

13.
14.
Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 Å resolution revealed the typical β-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR.  相似文献   

15.
To elucidate the actions of Draper, a receptor responsible for the phagocytic clearance of apoptotic cells in Drosophila, we isolated proteins that bind to the extracellular region of Draper using affinity chromatography. One of those proteins has been identified to be an uncharacterized protein called Drosophila melanogaster calcium-binding protein 1 (DmCaBP1). This protein containing the thioredoxin-like domain resided in the endoplasmic reticulum and seemed to be expressed ubiquitously throughout the development of Drosophila. DmCaBP1 was externalized without truncation after the induction of apoptosis somewhat prior to chromatin condensation and DNA cleavage in a manner dependent on the activity of caspases. A recombinant DmCaBP1 protein bound to both apoptotic cells and a hemocyte-derived cell line expressing Draper. Forced expression of DmCaBP1 at the cell surface made non-apoptotic cells susceptible to phagocytosis. Flies deficient in DmCaBP1 expression developed normally and showed Draper-mediated pruning of larval axons, but a defect in the phagocytosis of apoptotic cells in embryos was observed. Loss of Pretaporter, a previously identified ligand for Draper, did not cause a further decrease in the level of phagocytosis in DmCaBP1-lacking embryos. These results collectively suggest that the endoplasmic reticulum protein DmCaBP1 is externalized upon the induction of apoptosis and serves as a tethering molecule to connect apoptotic cells and phagocytes for effective phagocytosis to occur.  相似文献   

16.
17.
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGTR377Q were not affected. Importantly, the interaction between UDP-GlcNAc and EOGTR377Q was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.  相似文献   

18.
The heat shock response (HSR) is responsible for maintaining cellular and organismal health through the regulation of proteostasis. Recent data demonstrating that the mammalian HSR is regulated by SIRT1 suggest that this response may be under metabolic control. To test this hypothesis, we have determined the effect of caloric restriction in Caenorhabditis elegans on activation of the HSR and have found a synergistic effect on the induction of hsp70 gene expression. The homolog of mammalian SIRT1 in C. elegans is Sir2.1. Using a mutated C. elegans strain with a sir2.1 deletion, we show that heat shock and caloric restriction cooperate to promote increased survivability and fitness in a sir2.1-dependent manner. Finally, we show that caloric restriction increases the ability of heat shock to preserve movement in a polyglutamine toxicity neurodegenerative disease model and that this effect is dependent on sir2.1.  相似文献   

19.
The present study was done to investigate the effects of fucoidan and de-sulfated fucoidan isolated from the sporophyll of Undaria pinnatifida on the C. parvum adhesion to the cultured human intestinal cells and on the C. parvum infection in neonatal mice. The C. parvum adhesion to human Intestinal 407 cells was significantly suppressed by a low dose (1 micro g/ml) of Mekabu fucoidan (1 micro g/ml) (approx. 20.5 oocysts, p<0.0001), but not by de-sulfated fucoidan (approx. 138.2 oocysts), as compared with that (approx. 121.0 oocysts) of phosphate-buffered saline (PBS). The in vivo experiments presented here revealed that C. parvum oocysts in the fucoidan-treated mice was reduced nearly one fifth (approx. 5.4x10(4) oocysts, p<0.02) of the total number of oocysts (approx. 3.0x10(5)) in mice treated with PBS, but no significant effect of de-sulfated fucoidan was observed. These results show that (i) fucoidan effectively inhibits the growth of C. parvum in mice; and (ii) the ester sulfate of fucoidan is an active site to prevent the adhesion of C. parvum to the intestinal epithelial cells. Finally, we concluded that fucoidan might inhibit cryptosporidiosis through the direct binding of fucoidan to the C. parvum-derived functional mediators in the intestinal epithelial cells in neonatal mice.  相似文献   

20.
Alternative splicing is prevalent in plants, but little is known about its regulation in the context of developmental and signaling pathways. We describe here a new factor that influences pre-messengerRNA (mRNA) splicing and is essential for embryonic development in Arabidopsis thaliana. This factor was retrieved in a genetic screen that identified mutants impaired in expression of an alternatively spliced GFP reporter gene. In addition to the known spliceosomal component PRP8, the screen recovered Arabidopsis RTF2 (AtRTF2), a previously uncharacterized, evolutionarily conserved protein containing a replication termination factor 2 (Rtf2) domain. A homozygous null mutation in AtRTF2 is embryo lethal, indicating that AtRTF2 is an essential protein. Quantitative RT-PCR demonstrated that impaired expression of GFP in atrtf2 and prp8 mutants is due to inefficient splicing of the GFP pre-mRNA. A genome-wide analysis using RNA sequencing indicated that 13–16% of total introns are retained to a significant degree in atrtf2 mutants. Considering these results and previous suggestions that Rtf2 represents an ubiquitin-related domain, we discuss the possible role of AtRTF2 in ubiquitin-based regulation of pre-mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号