首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q Xiong  K Hase  Y Tezuka  T Namba  S Kadota 《Life sciences》1999,65(4):421-430
We assessed the effect of acteoside, a naturally occurring antioxidative phenylethanoid, on hepatic apoptosis and the subsequent liver failure induced by D-Galactosamine (D-GalN) and lipopolysaccharide (LPS). A co-administration of D-GalN (700 mg/kg) and LPS (35 microg/kg) to mice evoked typical hepatic apoptosis characterized by DNA fragmentation and apoptotic body formation, resulting in fulminant hepatitis and lethality of mice. Pre-administration of acteoside at 10 or 50 mg/kg subcutaneously at 12 and 1 h prior to D-GalN/LPS intoxication significantly inhibited hepatic apoptosis, hepatitis and lethality. Tumor necrosis factor-alpha (TNF-alpha) secreted from LPS-stimulated macrophages is an important mediator of apoptosis in this model. Acteoside showed no apparent effect on the marked elevation of serum TNF-alpha, but it partially prevented in vitro TNF-alpha (100 ng/ml)-induced cell death in D-GalN (0.5 mM)-sensitized hepatocytes at the concentrations of 50, 100 and 200 microM. These results indicated that D-GalN/LPS-induced hepatic apoptosis can be blocked by an exogenous antioxidant, suggesting the involvement of reactive oxygen intermediates (ROIs) in TNF-alpha-dependent hepatic apoptosis.  相似文献   

2.
Acute and fulminant liver failure induced by viral hepatitis, alcohol or other hepatotoxic drugs are associated with tumor necrosis factor (TNF) production. D-Galactosamine (D-GalN) and lipopolysaccharide (LPS)-induced liver injury is an experimental model of fulminant hepatic failure. In this model, TNF-alpha plays a central role in the pathogenesis of D-GalN/LPS-induced liver injury in mice. Y-40138, N-[1-(4-[4-(pyrimidin-2-yl)piperazin-1-yl]methyl phenyl)cyclopropyl] acetamide.HCl inhibits TNF-alpha and augments interleukin (IL)-10 production in LPS-injected mice in plasma. In the present study, we examined the effect of Y-40138 on D-GalN/LPS-induced hepatitis. Y-40138 (10mg/kg, i.v.) significantly suppressed TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) production and augmented IL-10 production in plasma. In addition, Y-40138 significantly inhibited TNF-alpha production induced by direct interaction between human T lymphocytes and macrophages. Y-40138 suppressed plasma alanine transaminase (ALT) elevation and improved survival rate in D-GalN/LPS-injected mice, and it is suggested that the protective effect of Y-40138 on hepatitis may be mediated by inhibition of TNF-alpha and MCP-1, and/or augmentation of IL-10. This compound is expected to be a new candidate for treatment of cytokine and/or chemokine-related liver diseases such as alcoholic hepatitis.  相似文献   

3.
Deoxyelephantopin (DET) is an abundant sesquiterpene lactone isolated from an anecdotally hepatoprotective phytomedicine, Elephantopus scaber. Our objective in this study was to provide scientific evidence for the in vivo efficacy and the underlying mechanisms of action of DET in lipopolysaccharide/d-galactosamine (LPS/D-GalN)-induced fulminant hepatitis. We investigated both the protective effect of pretreatment with DET (10 mg/kg body weight, Pre-DET10) prior to administration of LPS/D-GalN and the therapeutic effect of treatment with 10 mg/kg DET (Post-DET10) or the hepatoprotective drug silymarin (Post-SM10) following the administration of LPS/D-GalN. Our data showed that Pre-DET10 prevented LPS/D-GalN-induced infiltration of F4/80 monocytes/macrophages and an increase of nitrotyrosine and cyclooxygenase-2 protein in liver tissues. Further, Post-DET10 and Psot-SM10 treatments protected against liver cell apoptosis. All three treatments suppressed serum aminotransferase activities, tumor necrosis factor-alpha and interleukin-6 levels, and serum and hepatic matrix metalloproteinase-9 activity. The Pre-DET10 or Post-DET10 and Post-SM10 treatments in combination with inhibition of heme oxygenase-1 expression ultimately decreased protection of mice from LPS/D-GalN-induced mortality, with decreased survival from 75% and 62.5% to 50%, respectively. Results obtained from serial liver scintigraphy with 99mTc-diisopropyl iminodiacetic acid (DISIDA) on single-photon emission computed tomography analysis showed that both liver uptake and excretion times of DISIDA were significantly delayed in LPS/D-GalN-treated animals and were effectively recovered by DET and silymarin treatment. This report demonstrates that DET functions in the modulating multiple molecular targets or signaling pathways that counteract inflammation during the progression of fulminant hepatitis and may serve as a novel lead compound for future development of anti-inflammatory or hepatoprotective agents.  相似文献   

4.
Sun S  Guo Y  Zhao G  Zhou X  Li J  Hu J  Yu H  Chen Y  Song H  Qiao F  Xu G  Yang F  Wu Y  Tomlinson S  Duan Z  Zhou Y 《PloS one》2011,6(11):e26838
Fulminant hepatic failure (FHF) is a clinically severe type of liver injury with an extremely high mortality rate. Although the pathological mechanisms of FHF are not well understood, evidence suggests that the complement system is involved in the pathogenesis of a variety of liver disorders. In the present study, to investigate the role of complement in FHF, we examined groups of mice following intraperitoneal injection of LPS/D-GalN: wild-type C57BL/6 mice, wild-type mice treated with a C3aR antagonist, C5aR monoclonal antibody (C5aRmAb) or CR2-Factor H (CR2-fH, an inhibitor of the alternative pathway), and C3 deficient mice (C3−/− mice). The animals were euthanized and samples analyzed at specific times after LPS/D-GalN injection. The results show that intraperitoneal administration of LPS/D-GalN activated the complement pathway, as evidenced by the hepatic deposition of C3 and C5b-9 and elevated serum levels of the complement activation product C3a, the level of which was associated with the severity of the liver damage. C3a receptor (C3aR) and C5a receptor (C5aR) expression was also upregulated. Compared with wild-type mice, C3−/− mice survived significantly longer and displayed reduced liver inflammation and attenuated pathological damage following LPS/D-GalN injection. Similar levels of protection were seen in mice treated with C3aR antagonist,C5aRmAb or CR2-fH. These data indicate an important role for the C3a and C5a generated by the alternative pathway in LPS/D-GalN-induced FHF. The data further suggest that complement inhibition may be an effective strategy for the adjunctive treatment of fulminant hepatic failure.  相似文献   

5.
Tumor necrosis factor-alpha (TNF-alpha) produced by macrophages in response to CpG DNA induces severe liver injury and subsequent death of D-galactosamine (D-GalN)-sensitized mice. In the present study we demonstrate that mice pre-exposed to CpG DNA are resistant to liver injury and death induced by CpG DNA/D-GalN. CpG DNA/D-GalN failed to induce TNF-alpha production and hepatocyte apoptosis in the mice pre-exposed to CpG DNA. In addition, macrophages isolated from the CpG DNA-pretreated mice showed suppressed activation of MAPKs and NF-kappaB and production of TNF-alpha in response to CpG DNA, indicating that the CpG DNA-mediated protection of CpG DNA/D-GalN-challenged mice is due to the hyporesponsiveness of macrophages to CpG DNA. CpG DNA pretreatment in vivo inhibited expression of interleukin-1 receptor-associated kinase (IRAK)-1 while inducing IRAK-M expression in macrophages. Suppressed expression of IRAK-1 was responsible for the macrophage hyporesponsiveness to CpG DNA. However, increased expression of IRAK-M was not sufficient to render macrophages hyporesponsive to CpG DNA but was required for induction of the optimal level of macrophage hyporesponsiveness. Taken together, reduced expression of IRAK-1 and increased expression of IRAK-M after CpG DNA pretreatment resulted in the hyporesponsiveness of macrophages that leads to the protection of mice from hepatic injury and death caused by CpG DNA/D-GalN.  相似文献   

6.
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.  相似文献   

7.
The effect of COX (cyclo-oxygenase)-2-dependent PGs (prostaglandins) in acute liver injury has been investigated in transgenic mice that express human COX-2 in hepatocytes. We have used three well-established models of liver injury: in LPS (lipopolysaccharide) injury in D-GalN (D-galactosamine)-preconditioned mice; in the hepatitis induced by ConA (concanavalin A); and in the proliferation of hepatocytes in regenerating liver after PH (partial hepatectomy). The results from the present study demonstrate that PG synthesis in hepatocytes decreases the susceptibility to LPS/D-GalN or ConA-induced liver injury as deduced by significantly lower levels of the pro-inflammatory profile and plasmatic aminotransferases in transgenic mice, an effect suppressed by COX-2-selective inhibitors. These Tg (transgenic) animals express higher levels of anti-apoptotic proteins and exhibit activation of proteins implicated in cell survival, such as Akt and AMP kinase after injury. The resistance to LPS/D-GalN-induced liver apoptosis involves an impairment of procaspase 3 and 8 activation. Protection against ConA-induced injury implies a significant reduction in necrosis. Moreover, hepatocyte commitment to start replication is anticipated in Tg mice after PH, due to the expression of PCNA (proliferating cell nuclear antigen), cyclin D1 and E. These results show, in a genetic model, that tissue-specific COX-2-dependent PGs exert an efficient protection against acute liver injury by an antiapoptotic/antinecrotic effect and by accelerated early hepatocyte proliferation.  相似文献   

8.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   

9.
Platelets are reportedly causal in hepatitis. We previously showed that in mice, lipopolysaccharide (LPS) induces a reversible and macrophage-dependent hepatic platelet accumulation (HPA), including translocation of platelets into Disse spaces and their entry into hepatocytes. Concanavalin A (ConA), which induces hepatitis in mice via both T cells and macrophages, also induces HPA. Here, we examined the relationship between HPA and ConA-hepatitis. ConA-hepatitis and HPA were evaluated by serum transaminases, hepatic 5-hydroxytryptamine, and/or electron microscopy. Unlike LPS-induced HPA, ConA-induced HPA was only moderately dependent on phagocytic macrophages. Against expectations, platelet-depletion significantly exacerbated ConA-hepatitis, and anti-P-selectin antibody and P-selectin receptor blockade reduced both ConA-induced HPA and hepatitis. Prior induction of HPA by pretreatment with low-dose LPS powerfully reduced ConA-hepatitis. Such protection by LPS-pretreatment was not effective in mice depleted of phagocytic macrophages. In platelet-depleted mice, LPS-pretreatment severely exacerbated ConA-hepatitis. In mice depleted of both macrophages and platelets, neither ConA nor LPS-pretreatment + ConA induced hepatitis. In mice deficient in IL-1α and IL-1β (but not in TNFα), ConA-induced hepatitis was mild, and a protective effect of LPS was not detected. These results suggest that (i) there are causal and protective types of HPA, (ii) the causal type involves hepatic aggregation of platelets, which may be induced by platelet stimulants leaked from injured hepatocytes, (iii) the protective type is inducible by administration of prior low-dose LPS in a manner dependent on phagocytic (or F4/80-positive) macrophages, and (iv) IL-1 is involved in both the causal and protective types.  相似文献   

10.
11.
12.
目的建立脂多糖(lipopolysaccharide,LPS)/D-氨基半乳糖(D-galactosamine,D-GalN)诱导小鼠急性肝损伤模型。方法 40只雌性C57BL/6小鼠用于观察8种不同LPS与D-GalN剂量配比联合刺激后小鼠存活时间,以确定模型建立的最佳剂量。使用腹腔注射最佳剂量染毒32只雌性C57BL/6小鼠,分别在0、1、4、8 h处死,每组8只,0 h注射相同剂量生理盐水作为对照。观察染毒后小鼠肝组织病理损伤,检测血清中ALT及炎症因子IL-6、MCP-1和TNF-α表达水平变化。结果通过观察小鼠存活时间,确定腹腔注射最佳染毒剂量为LPS(2.5 mg/kg)/D-GalN(0.3 g/kg);小鼠染毒后肝组织呈进程性病变,最终发展为肝脏弥漫性坏死,肝细胞核崩解。与对照组相比,血清ALT显著升高(P0.001),IL-6、MCP-1、TNF-α均在1 h后达到最高水平(P0.001),然后持续下降。结论成功建立LPS/D-GaIN诱导小鼠急性肝损伤模型,为探索急性肝损伤的致病机制以及药物干预治疗提供有效的动物模型。  相似文献   

13.
14.
Osteopontin (OPN) is a multifunctional protein involved in hepatic steatosis, inflammation, fibrosis and cancer progression. However, its role in hepatic injury induced by ischemia–reperfusion (I–R) has not yet been investigated. We show here that hepatic warm ischemia for 45 min followed by reperfusion for 4 h induced the upregulation of the hepatic and systemic level of OPN in mice. Plasma aspartate aminotransferase and alanine aminotransferase levels were strongly increased in Opn−/− mice compared with wild-type (Wt) mice after I–R, and histological analysis of the liver revealed a significantly higher incidence of necrosis of hepatocytes. In addition, the expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNFα), interleukin 6 (IL6) and interferon-γ were strongly upregulated in Opn−/− mice versus Wt mice after I–R. One explanation for these responses could be the vulnerability of the OPN-deficient hepatocyte. Indeed, the downregulation of OPN in primary and AML12 hepatocytes decreased cell viability in the basal state and sensitized AML12 hepatocytes to cell death induced by oxygen–glucose deprivation and TNFα. Further, the downregulation of OPN in AML12 hepatocytes caused a strong decrease in the expression of anti-apoptotic Bcl2 and in the ATP level. The hepatic expression of Bcl2 also decreased in Opn−/− mice versus Wt mice livers after I–R. Another explanation could be the regulation of the macrophage activity by OPN. In RAW macrophages, the downregulation of OPN enhanced iNOS expression in the basal state and sensitized macrophages to inflammatory signals, as evaluated by the upregulation of iNOS, TNFα and IL6 in response to lipopolysaccharide. In conclusion, OPN partially protects from hepatic injury and inflammation induced in this experimental model of liver I–R. This could be due to its ability to partially prevent death of hepatocytes and to limit the production of toxic iNOS-derived NO by macrophages.  相似文献   

15.
Death receptor-mediated hepatocyte apoptosis is implicated in a wide range of liver diseases including viral and alcoholic hepatitis, ischemia/reperfusion injury, fulminant hepatic failure, cholestatic liver injury, as well as cancer. Deletion of NF-κB essential modulator in hepatocytes (IKKγ/Nemo) causes spontaneous progression of TNF-mediated chronic hepatitis to hepatocellular carcinoma (HCC). Thus, we analyzed the role of death receptors including TNFR1 and TRAIL in the regulation of cell death and the progression of liver injury in IKKγ/Nemo-deleted livers. We crossed hepatocyte-specific IKKγ/Nemo knockout mice (NemoΔhepa) with constitutive TNFR1−/− and TRAIL−/− mice. Deletion of TNFR1, but not TRAIL, decreased apoptotic cell death, compensatory proliferation, liver fibrogenesis, infiltration of immune cells as well as pro-inflammatory cytokines, and indicators of tumor growth during the progression of chronic liver injury. These events were associated with diminished JNK activation. In contrast, deletion of TNFR1 in bone-marrow-derived cells promoted chronic liver injury. Our data demonstrate that TNF- and not TRAIL signaling determines the progression of IKKγ/Nemo-dependent chronic hepatitis. Additionally, we show that TNFR1 in hepatocytes and immune cells have different roles in chronic liver injury–a finding that has direct implications for treating chronic liver disease.  相似文献   

16.
Retinoid-related orphan receptor (ROR) γt is known to be related to the development and function of various immunological compartments in the liver, such as Th17 cells, natural killer T (NKT) cells, and innate lymphoid cells (ILCs). We evaluated the roles of RORγt-expressing cells in mouse acute hepatitis model using RORγt deficient (RORγt−/−) mice and RAG-2 and RORγt double deficient (RAG-2−/− × RORγt−/−) mice. Acute hepatitis was induced in mice by injection with carbon tetrachloride (CCl4), to investigate the regulation of liver inflammation by RORγt-expressing cells. We detected RORC expression in three compartments, CD4+ T cells, NKT cells, and lineage marker-negative SCA-1+Thy1high ILCs, of the liver of wild type (WT) mice. CCl4-treated RORγt−/− mice developed liver damage in spite of lack of RORγt-dependent cells, but with reduced infiltration of macrophages compared with WT mice. In this regard, ILCs were significantly decreased in RAG-2−/− × RORγt−/− mice that lacked T and NKT cells. Surprisingly, RAG-2−/− × RORγt−/− mice developed significantly severer CCl4-induced hepatitis compared with RAG-2−/− mice, in accordance with the fact that hepatic ILCs failed to produce IL-22. Lastly, anti-Thy1 monoclonal antibody (mAb), but not anti-NK1.1 mAb or anti-asialo GM1 Ab administration exacerbated liver damage in RAG-2−/− mice with the depletion of liver ILCs. Collectively, hepatic RORγt-dependent ILCs play a part of protective roles in hepatic immune response in mice.  相似文献   

17.
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Poly (ADP-ribose) polymerase-1 has been demonstrated to be involved in tissue inflammation and one of its inhibitors, 3, 4-Dihydro-5[4-(1-piperindinyl)butoxy]-1(2H)-isoquinoline (DPQ), exerts anti-inflammatory effect. However, it is still unclear whether the DPQ possesses the protective effect on ALI and what mechanisms are involved. In this study, we tested the effect of DPQ on the lung inflammation induced by lipopolysaccharide (LPS) challenge in mice. We found that 6 h-LPS challenge induced significant lung inflammation and vascular leakage in mice. Treatment with DPQ at the dose of 10 μg/kg markedly reduced the neutrophil infiltration, myeloperoxidase activity and up-regulation of pro-inflammatory mediators and cytokines. LPS-elevated vascular permeability was decreased by DPQ treatment, accompanied by the inhibition of apoptotic cell death in mice lungs. In addition, we isolated mice peritoneal macrophages and showed pretreatment with DPQ at 10 μM inhibited the production of cytokines in the macrophages following LPS stimulation. DPQ treatment also inhibited the phosphorylation and degradation of IκB-α, subsequently blocked the activation of nuclear factor (NF)-κB induced by LPS in vivo and in vitro. Taken together, our results show that DPQ treatment inhibits NF-κB signaling in macrophages and protects mice against ALI induced by LPS, suggesting inhibition of Poly (ADP-ribose) polymerase-1 may be a potential and effective approach to resolve inflammation for the treatment of ALI.  相似文献   

18.
Flavonoids protect mice from two types of lethal shock induced by endotoxin   总被引:3,自引:0,他引:3  
The protective effect of flavonoids on two types of lethal endotoxic shock was studied. A lethal endotoxic shock was induced by administration of lipopolysaccharide (LPS) into D-galactosamine (D-GalN)-sensitized mice and another one was done by administration of a high dose of LPS into normal mice. Pretreatment with a series of flavonoids protected mice from two types of endotoxin lethality. Flavonoid pretreatment reduced the serum tumor necrosis factor-alpha (TNF-alpha) level in mice injected with D-GalN and LPS, but not in mice injected with a high dose of LPS. TNF-alpha-induced lethal shock in D-GalN-sensitized mice was also protected by pretreatment with flavonoids, suggesting that flavonoids augmented the resistance to TNF-alpha lethality. On the other hand, flavonoids reduced the plasma level of lipid peroxides in mice injected with a high dose of LPS, but not in D-GalN-sensitized mice. Taken together, these results indicated that flavonoids might protect mice from two types of endotoxin lethality. The protective mechanism of flavonoids in each endotoxin lethality is discussed.  相似文献   

19.
Immunosuppressive regulatory T cells (Tregs) have been hypothesized to exert a protective role in animal models of spontaneous (Buffalo/Mna) and/or drug induced (Adriamycin) nephrotic syndrome. In this study, we thought to define whether Tregs can modify the outcome of LPS nephropathy utilizing IL-2 as inducer of tissue and circulating Tregs. LPS (12 mg/Kg) was given as single shot in C57BL/6, p2rx7−/− and Foxp3EGFP; free IL-2 (18.000 U) or, in alternative, IL-2 coupled with JES6-1 mAb (IL-2/anti-IL-2) were injected before LPS. Peripheral and tissue Tregs/total CD4+ cell ratio, urinary parameters and renal histology were evaluated for 15 days. IL-2 administration to wild type mice had no effect on peripheral Tregs number, whereas a significant increase was induced by the IL-2/anti-IL-2 immunocomplex after 5 days. Spleen and lymph nodes Tregs were comparably increased. In p2rx7−/− mice, IL-2/anti-IL-2 treatment resulted in increase of peripheral Tregs but did not modify the spleen and lymph nodes quota. LPS induced comparable and transient proteinuria in both wild type and p2rx7−/− mice. Proteinuria was inhibited by co-infusion of human IL-2, with reduction at each phase of the disease (24 −48 and 72 hours) whereas IL-2/anti-IL-2 produced weaker effects. In all mice (wild type and p2rx7−/−) and irrespective of treatment (IL-2, IL-2/anti-IL-2), LPS was associated with progressive signs of renal pathologic involvement resulting in glomerulosclerosis. In conclusion, IL-2 plays a transient protective effect on proteinuria induced by LPS independent of circulating or tissue Tregs but does not modify the outcome of renal degenerative renal lesions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号