首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for γ-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.  相似文献   

2.
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.  相似文献   

3.
4.
Zinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN) ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus gt(ROSA26)Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ)-mediated gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR)-driven gene replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in mouse zygotes.  相似文献   

5.
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.  相似文献   

6.
An unbiased genome-wide analysis of zinc-finger nuclease specificity   总被引:1,自引:0,他引:1  
Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.  相似文献   

7.

Background

Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase.

Results

A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes.

Conclusions

The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of illegitimate integration emphasizes the importance of careful characterization of ZFN treated cells. In order to reduce off-target events, reversible cell cycle arrest of the target cells in the G2/M phase is an efficient way for increasing the ratio between specific HR and illegitimate integration.  相似文献   

8.
Targeted gene addition to mammalian genomes is central to biotechnology, basic research and gene therapy. For example, gene targeting to the ROSA26 locus by homologous recombination in embryonic stem cells is commonly used for mouse transgenesis to achieve ubiquitous and persistent transgene expression. However, conventional methods are not readily adaptable to gene targeting in other cell types. The emerging zinc finger nuclease (ZFN) technology facilitates gene targeting in diverse species and cell types, but an optimal strategy for engineering highly active ZFNs is still unclear. We used a modular assembly approach to build ZFNs that target the ROSA26 locus. ZFN activity was dependent on the number of modules in each zinc finger array. The ZFNs were active in a variety of cell types in a time- and dose-dependent manner. The ZFNs directed gene addition to the ROSA26 locus, which enhanced the level of sustained gene expression, the uniformity of gene expression within clonal cell populations and the reproducibility of gene expression between clones. These ZFNs are a promising resource for cell engineering, mouse transgenesis and pre-clinical gene therapy studies. Furthermore, this characterization of the modular assembly method provides general insights into the implementation of the ZFN technology.  相似文献   

9.
Efficient gene targeting in Drosophila with zinc-finger nucleases   总被引:13,自引:0,他引:13       下载免费PDF全文
This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequencies relies on cleavage of the target by designed zinc-finger nucleases (ZFNs) and production of a linear donor in situ. Increased induction of ZFN expression led to higher frequencies of gene targeting, demonstrating the beneficial effect of activating the target. In the absence of a homologous donor DNA, ZFN cleavage led to the recovery of new mutants at three loci-y, ry and bw-through nonhomologous end joining (NHEJ) after cleavage. Because zinc fingers can be directed to a broad range of DNA sequences and targeting is very efficient, this approach promises to allow genetic manipulation of many different genes, even in cases where the mutant phenotype cannot be predicted.  相似文献   

10.
Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM) locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+) and IgG(+) B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ~1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.  相似文献   

11.
12.
Targeted integration in rat and mouse embryos with zinc-finger nucleases   总被引:6,自引:0,他引:6  
Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.  相似文献   

13.
应用CRISPR-Cas9系统对人诱导多能干细胞(human induced pluripotent stem cells, hiPSCs)进行基因编辑,为疾病模型的建立、致病机制研究、药物筛选及基因校正治疗疾病提供了更广阔的平台。相对于CRISPR-Cas9介导的基因敲除,应用该系统介导的同源重组实现基因点突变或突变校正效率要低、且难度偏大。为了实现对MYO7A杂合点突变(c.4118C>T)的人iPSCs的点突变校正,本文构建了表达maxGFP的pX330质粒。针对需校正的突变位点,设计5组识别序列并连接到maxGFP-pX330中构建靶向质粒。将5组打靶质粒分别转染HEK 293FT细胞48 h,细胞表达GFP;测序结果显示,MYO7A基因相应位点出现杂峰,表明打靶质粒具有打断活性。将同源模版单链寡核苷酸链(single-stranded DNA oligonucleotides, ssODN)与打靶质粒共同电转入人iPSCs后48 h,经流式分选出(5.8±2.2)%的细胞表达GFP。分选后细胞行单克隆扩增并测序。结果显示,打靶质粒1和ssODN组合对点突变校正未成功;打靶质粒2、3、4、5与ssODN组合均获得了校正后的细胞株。本研究表明,打断位点是影响同源重组校正效率的关键因素。当应用CRISPR/Cas9(或其它核酸酶)介导的同源重组进行基因编辑操作时,可以同时选择多个打靶位点造成基因组不同位置上的双链打断(double-stranded break, DSB)位点,以获得目的单克隆细胞株。本研究为应用CRISPR-Cas9系统对人诱导多能干细胞进行基因编辑提供了有力参考。  相似文献   

14.
Mutations were targeted to the Hprt locus of mouse embryo-derived stem cells by using 22 different sequence replacement and sequence insertion vectors. The targeting frequency was examined at two sites within the Hprt locus as a function of the extent of homology between the targeting vector and the target locus. The targeting frequency was also compared by using vectors prepared from isogenic and nonisogenic DNA sources. With one exception, all of the vectors showed the same exponential dependence of targeting efficiency on the extent of homology between the targeting vector and the target locus. This was true regardless of whether they were sequence replacement or sequence insertion vectors, whether they were directed toward either of the two different sites within the Hprt locus, or whether they were prepared from isogenic or nonisogenic DNA sources. Vectors prepared from isogenic DNA targeted four to five times more efficiently than did the corresponding vectors prepared from nonisogenic DNA. The single case of unexpectedly low targeting efficiency involved one of the vectors prepared from nonisogenic DNA and could be attributed to an unfavorable distribution of heterology between the Hprt sequences present in the targeting vector and the endogenous Hprt gene.  相似文献   

15.
The reactivation of X‐linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X‐linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist‐inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X‐linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X‐linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.  相似文献   

16.
Genome modification by homology‐directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR‐mediated gene exchange of expression cassettes in tobacco BY‐2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7‐kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4‐kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR‐mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin‐resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN‐based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.  相似文献   

17.
Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest.  相似文献   

18.
Targeted disruption of the TGA3 locus in Arabidopsis thaliana   总被引:10,自引:3,他引:7  
A major drawback to study gene functions in plant systems is the lack of an effective gene knockout strategy. With a large number of plant genes isolated and the accelerating pace by which this collection is growing, the need for their functional analyses at the whole plant level has become increasingly urgent. Here evidence is reported for the first successful disruption of a non-selectable gene in Arabidopsis thaliana by creating a mutant of the TGA3 locus via targeted insertion of the bacterial neo gene conferring kanamycin (Km) resistance. A β-glucuronidase (GUS) expression unit outside the region of homology was used as a screenable marker to distinguish homologous recombination events from those of ectopic insertions. PCR amplification coupled with Southern blot screening identified two putative homologous recombination events among 2580 Kmr calli. One callus line was subsequently isolated and the structure of the targeted TGA3 allele confirmed by Southern blot analyses. This study demonstrates the feasibility of targeting a non-selectable locus in Arabidopsis. Combined with future improvements in negative selection strategies and efficient, transformation methodologies, gene replacement studies in plants could become a routine technique.  相似文献   

19.
20.
β‐thalassaemia is a prevalent hereditary haematological disease caused by mutations in the human haemoglobin β (HBB) gene. Among them, the HBB IVS2‐654 (C > T) mutation, which is in the intron, creates an aberrant splicing site. Bone marrow transplantation for curing β‐thalassaemia is limited due to the lack of matched donors. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), as a widely used tool for gene editing, is able to target specific sequence and create double‐strand break (DSB), which can be combined with the single‐stranded oligodeoxynucleotide (ssODN) to correct mutations. In this study, according to two different strategies, the HBB IVS2‐654 mutation was seamlessly corrected in iPSCs by CRISPR/Cas9 system and ssODN. To reduce the occurrence of secondary cleavage, a more efficient strategy was adopted. The corrected iPSCs kept pluripotency and genome stability. Moreover, they could differentiate normally. Through CRISPR/Cas9 system and ssODN, our study provides improved strategies for gene correction of β‐Thalassaemia, and the expression of the HBB gene can be restored, which can be used for gene therapy in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号