首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In microalgae, triacylglycerol (TAG) biosynthesis occurs by parallel pathways involving both the chloroplast and endoplasmic reticulum. A better understanding of contribution of each pathway to TAG assembly facilitates enhanced TAG production via rational genetic engineering of microalgae. Here, using a UPLC-MS(/MS) coupled with TLC-GC-based lipidomic platform, the early response of the major glycerolipids to nitrogen stress was analyzed at both the cellular and chloroplastidic levels in the model green alga Chlamydomonas reinhardtii. Subcellular lipidomic analysis demonstrated that TAG was accumulated exclusively outside the chloroplast, and remained unaltered inside the chloroplast after 4?h of nitrogen starvation. This study ascertained the existence of the glycolipid, digalactosyldiacylglycerol (DGDG), outside the chloroplast and the betaine lipid, diacylglycerol-N,N,N-trimethylhomoserine (DGTS), inside the chloroplast. The newly synthesized DGDG and DGTS prominently increased at the extra-chloroplastidic compartments and served as the major precursors for TAG biosynthesis. In particular, DGDG contributed to the extra-chloroplastidic TAG assembly in form of diacylglycerol (DAG) and DGTS in form of acyl groups. The chloroplastidic membrane lipid, monogalactosyldiacylglycerol (MGDG), was proposed to primarily offer DAG for TAG formation outside the chloroplast. This study provides valuable insights into the subcellular glycerolipidomics and unveils the acyl flux into the extra-chloroplastidic TAG in microalgae.  相似文献   

2.
Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation.  相似文献   

3.
Phosphate limitation caused significant changes in the fatty acid and lipid composition of Monodus subterraneus. With decreasing phosphate availability from 175 to 52.5, 17.5 and 0 microM (K2HPO4), the proportion of the major VLC-PUFA, eicosapentaenoic acid (EPA), gradually decreased from 28.2 to 20.8, 19.4 and 15.5 mol% (of total fatty acids), respectively. The cellular total lipid content of starved cells increased, mainly due to the dramatic increase in triacylglycerols (TAG) levels. Among polar lipids, cellular contents of digalactosyldiacylglycerol (DGDG) and diacylglyceroltrimethylhomoserine (DGTS) increased sharply from 0.29 and 0.19 to 0.60 and 0.38 fg cell(-1), respectively, while that of monogalactosyldiacylglycerol (MGDG) was not significantly changed. In the absence of phosphate, the proportion of phospholipids was significantly reduced from 8.3% to 1.4% of total lipids, and the proportion of triacylglycerols (TAG) increased from 6.5% up to 39.3% of total lipids. The share of MGDG was substantially reduced, from 35.7% to 13.3%, while that of DGDG and DGTS reduced less from 18.3% to 15.1%, and 12.2% to 8.6%, respectively. The most distinctive change in the fatty acid composition was noted in that of DGDG, where the proportion of EPA, located exclusively at the sn-1 position, increased from 11.3% to 21.5% at the expense of 16:0, 16:1 and 18:1. In MGDG, however, the proportion of EPA did not change appreciably. In contrast to higher plants, DGDG accumulated under P-deprivation in M. subterraneus, did not resemble PC and the positional distribution of its fatty acids was not altered, preserving the C20/C16 structure of its molecular species. We suggest that under phosphate starvation DGTS is a likely source of C20 acyl groups that can be exported to the sn-1 position of DGDG and can partially compensate for the decrease in PE, the apparent source of C20 acyl-containing diacylglycerols in this alga. Moreover, accumulation of non-esterified 18:0 indicates that no polar lipid can replace PC, which appears to be the only lipid capable of C18 desaturation in this alga.  相似文献   

4.
Monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and sulfoquinovosyl diacylglycerol (SQDG) are the most abundant lipid classes present in both the autotrophically and heterotrophically grownChlamydomonas reinhardtii. However, phosphatidylcholine (PC) and diacylglycerol (N,N,N-trimethyl)-homoserine (DGTS) were absent in both alga types. The polyne index B was higher in heterotrophic than photoautotrophic algae, but the unsaturation index was higher in photoautotrophic algae PI, PE and DGDG. The proportion of linolenic acid decreased under heterotrophy with compensatory increases in hexadecadienoic (16 : 3), oleic (18 : 1) and linoleic (18 : 3) acids.  相似文献   

5.
The marine alga Chlorella minutissima contains DGTS (diacylglyceryl-N,N,N-trimethylhomoserine) as a major component (up to 44% of total lipids). This lipid is absent from other members of the Chlorococcales, except for C. fusca, which contains DGTS as 1.3% of total lipids. Contrary to expectation, the DGTS is accompanied by PC (phosphatidylcholine) as the major phospholipid. DGTS is normally highly saturated in the C-1 position of glycerol, but in C. minutissima, both C-1 and C-2 are acylated with EPA (eicosapentaenoic acid, 20:5) in the major molecular species (over 90% of total). The DGTS level shows a marked rhythmic fluctuation with time which is inversely correlated with the level of MGDG (monogalactosyldiacylglycerol), the other major lipid. Improved NMR data and the first electrospray MS data on this lipid are presented.  相似文献   

6.
The total amount of fatty acids in the mono- (MGDG) and diglycosyl diglyceride (DGDG) and more polar lipid fractions of frozen Ceratodon purpureus shoots was 4.6, 3.4 and 4.0 mg/g dry weight, respectively. The respective values for the tops of frozen Pleurozium schreberi were 2.6, 3.3 and 3.8 mg/g dry weight. The molar ratios MGDG/DGDG and MGDG + DGDG/chlorophyll were 1.3 and 3.7, respectively, for C. purpureus and 0.8 and 3.5 for P. schreberi. In C. purpureus the main fatty acids in the MGDG fraction were C 18:3ω3 (44% of the total fatty acids) and C 16:3ω3 (26%); in the DGDG fraction C 18:3ω3 (70%); and in the more polar lipid fraction C 18: 3ω3 (26%) and C 16:0 (25%). The proportion of C 20 polyunsaturated fatty acids was 15, 12 and 19% of the total fatty acids found in the MGDG, DGDG and more polar lipid fractions, respectively. In P. schreberi the proportion of C 20 polyunsaturated fatty acids was high in all polar lipid fractions (47, 42 and 25% in MGDG, DGDG and more polar lipid fractions, respectively). In addition, MGDG and DGDG fractions contained abundantly C 18:3ω3 (32 and 45%, respectively), and the more polar lipid fraction both C 18: 3ω3 (24%) and C 16:0 (27%).  相似文献   

7.
The biosynthesis of lipids in Cryptomonas strain CR-1 was studiedusing radioactive tracers. For studies of general aspects ofthe biosynthesis of lipids, the cells were labelled with [14C]NaHCO3or with [l,3-14]glycerol. In both cases, monogalactosyl diacylglycerol(MGDG) was the most heavily labelled lipid. Phosphatidylcholineand the alanine lipid DGTA were not labelled to specific activitiescomparable to those of MGDG and DGDG. It is improbable thatthe so-called "eukaryotic pathway", which has been suggestedas the pathway for the synthesis of " eukaryotic" molecularspecies of MGDG from PC in higher plants, is operative in Cryptomonascells which contain typical "eukaryotic" MGDG. The homoserinelipid DGTS was labelled to a significant level only in its polargroup. The C-3 and C-4 atoms of methionine, as well as the methylcarbon of methionine, were incorporated into both DGTS and DGTA,whereas the C-l carbon of methionine was incorporated uniquelyinto DGTS. Results of pulse-chase experiments with [3,4-14C]methionineand [methyl.-l4C]methionine suggest the conversion of DGTS toDGTA. (Received April 22, 1991; Accepted June 12, 1991)  相似文献   

8.
Monogalactosyldiacylglycerol (MGDG), the most abundant lipid in thylakoid membranes, is involved in photosynthesis and chloroplast development. MGDG lipase has an important role in lipid remodeling in Chlamydomonas reinhardtii. However, the process related to turnover of the lysogalactolipid that results from MGDG degradation, monogalactosylmonoacylglycerol (MGMG), remains to be clarified. Here we identified a homolog of Arabidopsis thaliana lysophosphatidylcholine acyltransferase (LPCAT) and characterized two independent knockdown (KD) alleles in C. reinhardtii. The enzyme designated as C. reinhardtiiLysolipid Acyltransferase 1 (CrLAT1) has a conserved membrane-bound O-acyl transferase domain. LPCAT from Arabidopsis has a key role in deacylation of phosphatidylcholine (PC). Chlamydomonas reinhardtii, however, lacks PC, and thus we hypothesized that CrLAT1 has some other important function in major lipid flow in this organism. In the CrLAT1 KD mutants, the amount of MGMG was increased, but triacylglycerols (TAGs) were decreased. The proportion of more saturated 18:1 (9) MGDG was lower in the KD mutants than in their parental strain, CC-4533. In contrast, the proportion of MGMG has decreased in the CrLAT1 overexpression (OE) mutants, and the proportion of 18:1 (9) MGDG was higher in the OE mutants than in the empty vector control cells. Thus, CrLAT1 is involved in the recycling of MGDG in the chloroplast and maintains lipid homeostasis in C. reinhardtii.

A recycling system of the major thylakoid lipid monogalactosyldiacylglycerol in the Chlamydomonas reinhardtii chloroplast contributes to lipid homeostasis.  相似文献   

9.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

10.
Autophagy mediates degradation and recycling of cellular components and plays an important role in senescence and adaptive responses to biotic and abiotic stresses. Nutrient deprivation has been shown to trigger triacylglycerol (TAG) accumulation and also induces autophagy in various green algae. However, the functional relationship between TAG metabolism and autophagy remains unclear. To gain preliminary evidence supporting a role of autophagy in TAG synthesis, Chlamydomonas reinhardtii CC-2686 was grown in Tris-acetate phosphate medium with or without nitrogen and treated with an autophagy inducer (rapamycin) or inhibitors (wortmannin, 3-methyladenine, and bafilomycin A1). Fluorescence microscopic analysis of Nile red-stained cells following 72-h treatments showed that rapamycin induced accumulation of subcellular lipid droplets which are storage sites of TAG. Rapamycin treatment in combination with nitrogen starvation led to a greater abundance of lipid droplets. Wortmannin and bafilomycin A1, but not 3-methyladenine, inhibited lipid droplet accumulation in rapamycin-treated cells and to a less extent in nitrogen-depleted cells. These results suggested that autophagy contributes to TAG synthesis in C. reinhardtii, but is not a necessary process. Autophagy induction may also be used to further enhance TAG accumulation in microalgae under nutrient deprivation.  相似文献   

11.
Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.  相似文献   

12.
When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)‐ and phosphorus (P)‐starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic‐growth‐phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation‐dependent overexpressor of a Chlamydomonas type‐2 diacylglycerol acyl‐CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up‐regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation–inducible promoter.  相似文献   

13.
The laboratory strains of Chlamydomonas reinhardtii have been reported to contain no phosphatidylcholine (PC), which is considered to be replaced by another zwitterionic lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS). According to the recently published classification, the strains belonged to the subgroup Reinhardtinia. Screening for PC in 13 selected strains of Chlamydomonas in the NIES Algal Collection, which are different in habitats and belong to different phylogenetic subgroups in the genus, revealed the presence of PC in four strains: a strain in the subgroup Polytominia, and three strains in Reinhardtinia. PC was not detected in three other strains of Reinhardtinia analyzed. The presence/absence of PC was not related to the phylogenetic relationship based on 18S rRNA. DGTS was detected in all the strains analyzed. The rare isomer of linolenic acid, 18:3(5,9,12), which has been found in the DGTS of C. reinhardtii, was found in the PC of the two strains and in the DGTS of the five strains. The occurrence of this fatty acid seems limited to a branch of Reinhardtinia. Acquisition and loss of PC in various strains of Chlamydomonas are discussed from the viewpoint of evolution of PC biosynthetic pathway.  相似文献   

14.
Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase.  相似文献   

15.
The chloroplast galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were isolated from wheat leaves. The phase equilibria of galactolipid-water systems with MGDG / DGDG molar ratios equal to 0:1, 1:2, 1.2:1, 2:1 and 1:0 were investigated, using nuclear magnetic resonance (NMR) methods. MGDG and DGDG form reversed hexagonal and lamellar phases, respectively, at temperatures between 10 and 40°C at all water contents studied (up to about 14 mol 2H2O per mol lipid). The galactolipid mixtures show a complex phase forming reversed hexagonal, lamellar and reversed cubic phases, depending on water content and temperature. It was found that the water hydration is similar for the lamellar and hexagonal phases formed by DGDG and MGDG, respectively. The non-lamellar phase areas increase with increasing content of MGDG. Small-angle X-ray measurements show that the cubic phase belongs to the Ia3d space group. From translational diffusion studies by NMR it is concluded that the structure of this cubic phase is bicontinuous.  相似文献   

16.
Lipids and fatty acids of Ectocarpus fasciculatus (Ectocarpales,Phaeophyceae) were analyzed. Major polar lipids are monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), diacylglycerylhydroxymethyl-N,N,N-trimethyl-rß-alanine(DGTA), phosphatidylcholine (PC), phospha-tidylethanolamine(PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI).Diphosphatidylglycerol (DPG), phosphatidic acid (PA) and phosphatidyl-O-[N-(2-hydroxy-ethyl)glycine](PHEG) were also present in small amounts. Nonpolar lipids mainlyconsist of triacylglycerol (TAG) and diacylglycerol (DAG). Majorfatty acids are 16:0,18:1, 18:3, 18:4, 20:4 and 20:5. The positionaldistribution of fatty acids showed that molecular species ofeukaryotic structure account for 99% in MGDG, 98% in DGDG, 62%in PG and 23% in SQDG. On incubation with [1-14C]18:1 for 30min, 33% of the total label was detected in TAG, 16% in PG,14% in PE, 10% in PC and 8% in MGDG. During 7 days of chase,the label in TAG, PG, PE and PC decreased and simultaneouslyincreased in MGDG up to 41% of the total. In SQDG, labelledfatty acids were found in prokaryotic as well as in eukaryoticmolecular species. During the experiment, the label shiftedfrom 18:1 to 18:2, 18:3, 18:4 and, to a minor extent, to 20:4and 20:5 acids indicating 18:1 to be processed by elongationand/or desaturation. These results suggest TAG to act as a majorprimary acceptor of exogenous oleate and to be involved in thetransfer of fatty acids to MGDG and other polar lipids. (Received March 24, 1997; Accepted June 11, 1997)  相似文献   

17.
18.
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.

In Chlamydomonas, about a third of triacylglycerol (TAG) made during nitrogen deprivation is derived from preexisting membranes, and most membranes made after resupply are derived from TAG.  相似文献   

19.
Major glycolipids [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)) and phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)] as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from Anfeltia tobuchiensis (Rhodophyta), Laminaria japonica, Sargassum pallidum (Phaeophyta), Ulva fenestrata (Chlorophyta) and Zostera marina (Embriophyta), harvested in the Sea of Japan. GC analysis of their fatty acid (FA) composition revealed that the n-6 polyunsaturated FAs (PUFAs) shared the most part of the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG. In algae, it was related to the prevalence of 20:4n-6 over 20:5n-3 in non-photosynthetic lipids. Percentage of n-6 PUFAs as well as the sum of n-3 and n-6 PUFAs decreased in the following sequence: PC-->PE-->PG. The saturation increased in the lines of MGDG-->DGDG-->SQDG and PC-->PE-->PG. PG was close to SQDG by the level of saturation. Distribution of C(18) and C(20) PUFAs in polar lipids depended on taxonomic position of macrophytes. Balance between C(18) and C(20) PUFAs was preferably shifted to the side of C(20) PUFAs in PC and PE that was observed in contrast to glycolipids and PG from L. japonica containing both series of FAs. The set of major FAs of polar lipid classes can essentially differ from each other and from total lipids of macrophytes. For example, MGDG was found to accumulate characteristic fatty acids 16:4n-3, 16:3n-3, 18:3n-6 and 18:4n-3, 20:3n-6 in U. fenestrata, Z. marina, L. japonica and S. pallidum, respectively.  相似文献   

20.
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl‐constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER‐to‐chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号