首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Summary

A poly (A)-binding protein from Leishmania infantum (LiPABP) has been recently cloned and characterized in our laboratory. Although this protein shows a very high homology with PABPs from other eukaryotic organisms including mammals and other parasites, exist divergences along the sequence that convert them in potential diagnostic markers and/or therapeutics targets. Aptamers are oligonucleotide ligands that are selected in vitro by their affinity and specificity for the target as a consequence of the particular tertiary structure that they are able to acquire depending on their sequence. Development of high-affinity molecules with the ability to recognize specifically Leishmania proteins is essential for the progress of this kind of study.

Results

We have selected a ssDNA aptamer population against a recombinant 6xHIS–LiPABP protein (rLiPABP) that is able to recognize the target with a low Kd. Cloning, sequencing and in silico analysis of the aptamers obtained from the population yielded three aptamers (ApPABP#3, ApPABP#7 and ApPABP#11) that significantly bound to PABP with higher affinity than the naïve population. These aptamers were analyzed by ELONA and slot blot to establish affinity and specificity for rLiPABP. Results demonstrated that the three aptamers have high affinity and specificity for the target and that they are able to detect an endogenous LiPABP (eLiPABP) protein amount corresponding to 2500 L. infantum promastigotes in a significant manner. The functional analysis of the aptamers also revealed that ApPABP#11 disrupts the binding of both Myc-LiPABP and eLiPABP to poly (A) in vitro. On the other hand, these aptamers are able to bind and purify LiPABP from complex mixes.

Conclusion

Results presented here demonstrate that aptamers represent new reagents for characterization of LiPABP and that they can affect LiPABP activity. At this respect, the use of these aptamers as therapeutic tool affecting the physiological role of PABP has to be analyzed.  相似文献   

2.
Leishmania-specific cytotoxic T cell response is part of the acquired immune response developed against the parasite and contributes to resistance to reinfection. Herein, we have used an immune-informatic approach for the identification, among Leishmania major potentially excreted/secreted proteins previously described, those generating peptides that could be targeted by the cytotoxic immune response. Seventy-eight nonameric peptides that are predicted to be loaded by HLA-A*0201 molecule were generated and their binding capacity to HLA-A2 was evaluated. These peptides were grouped into 20 pools and their immunogenicity was evaluated by in vitro stimulation of peripheral blood mononuclear cells from HLA-A2+-immune individuals with a history of zoonotic cutaneous leishmaniasis. Six peptides were identified according to their ability to elicit production of granzyme B. Furthermore, among these peptides 3 showed highest affinity to HLA-A*0201, one derived from an elongation factor 1-alpha and two from an unknown protein. These proteins could constitute potential vaccine candidates against leishmaniasis.  相似文献   

3.
Judging from fluorescence modulation (quenching), short peptides (Ala-Glu-Asp-Gly, Glu-Asp-Arg, Ala-Glu-Asp-Leu, Lys-Glu-Asp-Gly, Ala-Glu-Asp-Arg, and Lys-Glu-Asp-Trp) bind with FITC-labeled wheat histones H1, H2в, H3, and H4. This results from the interaction of the peptides with the N-terminal histone regions that contain respective and seemingly homologous peptide-binding motifs. Because homologous amino acid sequences in wheat core histones were not found, the peptides seem to bind with some core histone regions having specific conformational structure. Peptide binding with histones and histone-deoxyribooligonucleotide complexes depends on the nature of the histone and the primary structures of the peptides and oligonucleotides; thus, it is site specific. Histones H1 bind preferentially with single-stranded oligonucleotides by homologous sites in the C-terminal region of the protein. Unlike histone H1, the core histones bind pre-dominantly with double-stranded methylated oligonucleotides and methylated DNA. Stern-Volmer constants of interaction of histone H1 and core histones with double-stranded hemimethylated oligonucleotides are higher compared with that of binding with unmethylated ones. DNA or deoxyribooligonucleotides in a complex with histones can enhance or inhibit peptide binding. It is suggested that site-specific interactions of short biologically active peptides with histone tails can serve in chromatin as control epigenetic mechanisms of regulation of gene activity and cellular differentiation.  相似文献   

4.
Histone tail post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) regulate many cellular processes. Among these modifications, phosphorylation, methylation and acetylation have already been described in trypanosomatid histones. Bromodomains, together with chromodomains and histone-binding SANT domains, were proposed to be responsible for “histone code” reading. The Trypanosoma cruzi genome encodes four coding sequences (CDSs) that contain a bromodomain, named TcBDF1-4. Here we show that one of those, TcBDF2, is expressed in discrete regions inside the nucleus of all the parasite life cycle stages and binds H4 and H2A purified histones from T. cruzi. Immunolocalization experiments using both anti-histone H4 acetylated peptides and anti-TcBDF2 antibodies determined that TcBDF2 co-localizes with histone H4 acetylated at lysines K10 and K14. TcDBF2 and K10 acetylated H4 interaction was confirmed by co-immunoprecipitation. It is also shown that TcBDF2 was accumulated after UV irradiation of T. cruzi epimastigotes. These results suggest that TcBDF2 could be taking part in a chromatin remodelling complex in T. cruzi.  相似文献   

5.
Histone modifying enzymes have vital roles in the growth and survival of both parasites and humans. Targeting the epigenome can be a new strategy for the treatment of parasitic diseases. Compounds modulating histone acetylation/deacetylation have recently been reported hampering Plasmodium, Schistosoma, Leishmania, and Trypanosoma infections. Beside new histone deacetylase inhibitors, PfGCN5 and bromodomain inhibitors have been recently described to inhibit Plasmodium proliferation. Sm histone deacetylase 8 and SmSIRT2, as well as Leishmania and Trypanosoma sirtuins (SIR2rps), seem to be the most reliable targets to effectively fight the related protozoan infections. The selectivity toward parasite over mammalian cells is still an open question, and significant optimization efforts of epidrugs are still required to improve potency/selectivity and decrease toxicity. Recent reports on the alteration of cellular signaling pathways provoked by parasite infection through changes in the host acetylation/deacetylation status at gene promoters may suggest novel therapeutic strategies to treat these diseases.  相似文献   

6.

Background

Nucleosomal histones are intracellular proteins that are highly conserved among Leishmania species. After parasite destruction or spontaneous lysis, exposure to these proteins elicits a strong host immune response. In the present study, we analyzed the protective capability of Leishmania infantum chagasi nucleosomal histones against L. braziliensis infection using different immunization strategies.

Methodology/Principal Findings

BALB/c mice were immunized with either a plasmid DNA cocktail (DNA) containing four Leishmania nucleosomal histones or with the DNA cocktail followed by the corresponding recombinant proteins plus CpG (DNA/Protein). Mice were later challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development, parasite load and the cellular immune response were analyzed five weeks after challenge. Immunization with either DNA alone or with DNA/Protein was able to inhibit lesion development. This finding was highlighted by the absence of infected macrophages in tissue sections. Further, parasite load at the infection site and in the draining lymph nodes was also significantly lower in vaccinated animals. This outcome was associated with increased expression of IFN-γ and down regulation of IL-4 at the infection site.

Conclusion

The data presented here demonstrate the potential use of L. infantum chagasi nucleosomal histones as targets for the development of vaccines against infection with L. braziliensis, as shown by the significant inhibition of disease development following a live challenge.  相似文献   

7.
Phosphorylation of Plant H2A Histones   总被引:2,自引:1,他引:1  
Phosphorylation of wheat (Triticum aestivum) and alfalfa (Medicago sativa) H2A histone variants was examined during early seedling growth. The C-terminal regions of wheat H2A variants contain multiple S-P tetrapeptides (serine-proline adjacent to a pair of basic amino acids) which resemble known phosphorylation sites in histones from other species. Phosphorylation of nucleosomal core histones was assessed by autoradiography of proteins labeled in vivo with 32Pi and resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylation sites were mapped by cleaving in vivo labeled H2A variants with N-bromosuccinimide. Essentially all phosphorylation of nucleosomal core histones in wheat and alfalfa seedlings occurred within the C-terminal peptides obtained from wheat and alfalfa H2A variants. A hypothesis accounting for the presence of large H2A and H2B histone variants in plants and phosphorylation of plant H2A C-terminal regions is proposed. The utility of S-P tetrapeptides for modulation of DNA-protein interactions is discussed.  相似文献   

8.
BackgroundBuruli ulcer (BU) is a subcutaneous skin disease listed among the neglected tropical diseases by the World Health Organization (WHO). Early case detection and management is very important to reduce morbidity and the accompanied characteristic disfiguring nature of BU. Since diagnosis based on clinical evidence can lead to misdiagnosis, microbiological confirmation is essential to reduce abuse of drugs; since the anti-mycobacterial drugs are also used for TB treatment. The current WHO gold standard PCR method is expensive, requires infrastructure and expertise are usually not available at the peripheral centers where BU cases are managed. Thus one of the main research agendas is to develop methods that can be applied at the point of care. In this study we selected aptamers, which are emerging novel class of detection molecules, for detecting mycolactone, the first to be conducted in a BUD endemic country.MethodsAptamers that bind to mycolactone were isolated by the SELEX process. To measure their affinity and specificity to mycolactone, the selected aptamers were screened by means of isothermal titration calorimetry (ITC) and an enzyme-linked oligonucleotide assay (ELONA). Selected aptamers were assessed by ELONA using swab samples from forty-one suspected BU patients with IS2404 PCR and culture as standard methods. ROC analysis was used to evaluate their accuracy and cutoff-points.ResultsFive out of the nine selected aptamers bound significantly (p< 0.05) to mycolactone, of these, three were able to distinguish between mycolactone producing mycobacteria, M. marinum (CC240299, Israel) and other bacteria whilst two others also bounded significantly to Mycobacterium smegmatis. Their dissociation constants were in the micro-molar range. At 95% confidence interval, the ROC curve analysis among the aptamers at OD450 ranged from 0.5–0.7. Using this cut-off for the ELONA assay, the aptamers had 100% specificity and sensitivity between 0.0% and 50.0%. The most promising aptamer, Apt-3683 showed a discernible cleavage difference relative to the non-specific autocatalysis over a 3-minute time course.ConclusionThis preliminary proof-of-concept indicates that diagnosis of BUD with RNA aptamers is feasible and can be used as point of care upon incorporation into a diagnostic platform.  相似文献   

9.
We recently noticed that there is a major error in Figure 1 of our review published in Epignetics 2010, Volume 6, Issue 2. During the preparation of the figure, the human and yeast H2B tyrosines were numbered the same, making the human numbering incorrect. The correct Figure 1 with proper numbering of human tyrosines is below.Erratum to:Singh R.K. and Gunjan A. Histone tyrosine phosphorylation comes of age.Epigenetics 2011; 6:153-60.We recently noticed that there is a major error in Figure 1 of our review published in Epignetics 2010, Volume 6, Issue 2. During the preparation of the figure, the human and yeast H2B tyrosines were numbered the same, making the human numbering incorrect. The correct Figure 1 with proper numbering of human tyrosines is below.Open in a separate windowFigure 1. Tyrosine residues are highly conserved between budding yeast and mammalian core histones. The four canonical core histone proteins from the budding yeast Saccharomyces cerevisiae are indicated by the prefix “Sc” and denoted in blue. The mammalian core histones and the mammalian variant histone H2A.X are shown in black. The number of amino acid (aa) residues in each core histone is indicated on the right. The location of the a-helices in the secondary structure of the histone proteins is indicated by cylinders. Tyrosine residues are shown as balloons and the tyrosine residues essential for viability in budding yeast histones are indicated by red balloons. Tyrosines in mammalian histones have not yet been evaluated to determine the residues essential for viability. Note the high degree of conservation of the location as well as the spacing of all but one tyrosine residue between budding yeast and mammalian core histones (H3 Y54 being the exception). Tyrosine residues that have recently been shown to be phosphorylated in vivo are marked by yellow “explosion” signs and the letter “P.” Additional tyrosine residues that are predicted to be reasonably accessible in the nucleosomal context under certain conditions and can be potentially phosphorylated in vivo are indicated by a yellow halo only on the mammalian histones for clarity, but are likely to be just as applicable to the yeast histones. Solid yellow halo indicates higher probability of phosphorylation, while a dashed yellow halo indicates lower probability of phosphorylation.  相似文献   

10.

Background

Zoonotic visceral leishmaniasis (VL) is a severe infectious disease caused by protozoan parasites of the genus Leishmania and the domestic dogs are the main urban parasite reservoir hosts. In Brazil, indirect fluorescence antibody tests (IFAT) and indirect enzyme linked immunosorbent assay (ELISA) using promastigote extracts are widely used in epidemiological surveys. However, their sensitivity and specificity have often been compromised by the use of complex mixtures of antigens, which reduces their accuracy allowing the maintenance of infected animals that favors transmission to humans. In this context, the use of combinations of defined peptides appears favorable. Therefore, they were tested by combinations of five peptides derived from the previously described Leishmania diagnostic antigens A2, NH, LACK and K39.

Methodology/Principal Findings

Combinations of peptides derived A2, NH, LACK and K39 antigens were used in ELISA with sera from 44 human patients and 106 dogs. Improved sensitivities and specificities, close to 100%, were obtained for both sera of patients and dogs. Moreover, high sensitivity and specificity were observed even for canine sera presenting low IFAT anti-Leishmania antibody titers or from asymptomatic animals.

Conclusions/Significance

The use of combinations of B cell predicted synthetic peptides derived from antigens A2, NH, LACK and K39 may provide an alternative for improved sensitivities and specificities for immunodiagnostic assays of VL.  相似文献   

11.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

12.
We previously reported the activities and modes of action of arginine (Arg)-rich histones H3 and H4 against Gram-negative bacteria. In the present study, we investigated the properties of the Arg-rich histones against Gram-positive bacteria in comparison with those of lysine (Lys)-rich histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against Staphylococcus aureus with minimum effective concentration values of 4.0, 4.0, and 5.6 μM, respectively. Laser confocal microscopic analyses revealed that both the Arg-rich and Lys-rich histones associated with the surface of S. aureus. However, while the morphology of S. aureus treated with histone H2B appeared intact, those treated with the histones H3 and H4 closely resembled each other, and the cells were blurred. Electrophoretic mobility shift assay results revealed these histones have binding affinity to lipoteichoic acid (LTA), one of major cell surface components of Gram-positive bacteria. Scanning electron microscopic analyses demonstrated that while histone H2B elicited no obvious changes in cell morphology, histones H3 and H4 disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. Consequently, our results suggest that bacterial cell surface LTA initially attracts both the Arg- and Lys-rich histones, but the modes of antimicrobial action of these histones are different; the former involves cell membrane disruption and the latter involves the cell integrity disruption.  相似文献   

13.

Background

There are several reports demonstrating the role of CD8 T cells against Leishmania species. Therefore peptide vaccine might represent an effective approach to control the infection. We developed a rational polytope-DNA construct encoding immunogenic HLA-A2 restricted peptides and validated the processing and presentation of encoded epitopes in a preclinical mouse model humanized for the MHC-class-I and II.

Methods and Findings

HLA-A*0201 restricted epitopes from LPG-3, LmSTI-1, CPB and CPC along with H-2Kd restricted peptides, were lined-up together as a polytope string in a DNA construct. Polytope string was rationally designed by harnessing advantages of ubiquitin, spacers and HLA-DR restricted Th1 epitope. Endotoxin free pcDNA plasmid expressing the polytope was inoculated into humanized HLA-DRB1*0101/HLA-A*0201 transgenic mice intramuscularly 4 days after Cardiotoxin priming followed by 2 boosters at one week interval. Mice were sacrificed 10 days after the last booster, and splenocytes were subjected to ex-vivo and in-vitro evaluation of specific IFN-γ production and in-vitro cytotoxicity against individual peptides by ELISpot and standard chromium-51(51Cr) release assay respectively. 4 H-2Kd and 5 HLA-A*0201 restricted peptides were able to induce specific CD8 T cell responses in BALB/C and HLA-A2/DR1 mice respectively. IFN-γ and cytolytic activity together discriminated LPG-3-P1 as dominant, LmSTI-1-P3 and LmSTI-1-P6 as subdominant with both cytolytic activity and IFN-γ production, LmSTI-1-P4 and LPG-3-P5 as subdominant with only IFN-γ production potential.

Conclusions

Here we described a new DNA-polytope construct for Leishmania vaccination encompassing immunogenic HLA-A2 restricted peptides. Immunogenicity evaluation in HLA-transgenic model confirmed CD8 T cell induction with expected affinities and avidities showing almost efficient processing and presentation of the peptides in relevant preclinical model. Further evaluation will determine the efficacy of this polytope construct protecting against infectious challenge of Leishmania. Fortunately HLA transgenic mice are promising preclinical models helping to speed up immunogenicity analysis in a human related mouse model.  相似文献   

14.
  • 1.1. Patterns of histone variants from three diptera, Ceratitis capitata, Dacus oleae and Drosophila melanogaster were compared to mouse and to Plodia interpunctella variant patterns.
  • 2.2. The three diptera contain histones which comigrate on two dimensional gels with H3.2, H3.3 and H4 in mouse and Plodia. H2A.1 and H2B.1 comigrate with Plodia H2A.1 and H2B.1 and are different from mouse, whilst H2A.Z has a different mobility to that of Plodia and mouse.
  • 3.3. The iodinated peptides obtained from H2A.1 and H2A.2 of the diptera studied are compared to mouse and Plodia H2A.1 and H2A.Z peptides.
  • 4.4. The histone variants from three developmental stages, larval, pupal and adult of the three diptera were identified and compared.
  • 5.5. The same histone variant pattern is found through all stages of development.
  相似文献   

15.
Ubiquitylation of histone H2B and/or a component of the system that ubiquitylates H2B is required for methylation of histone H3 at lysine 4 (H3K4) in yeasts and probably in humans. In this study, the single ubiquitylation site was mapped to conserved lysine 115 of the C-terminal region of histone H2B in the single-cell model organism Tetrahymena thermophila. In strains lacking H2B ubiquitylation, H3K4 methylation was not detectably affected. As in other organisms, the E2 ubiquitin-conjugating enzyme Ubc2 and the E3 ubiquitin ligase Bre1 were required for H2B ubiquitylation. However, neither enzyme was required for H3K4 methylation. These studies argue that, in T. thermophila, the histone ubiquitylation mechanism is not required for H3K4 methylation, demonstrating that different organisms can speak different languages in the “cross-talk” among post-translational modifications on different histones.  相似文献   

16.
Mature erythrocytes from Leghorn chickens contain lysine-rich histone F1 and a tissue-specific histone F2c. The composition of the F1 fraction was found to be similar to the F1 histones in higher vertebrates. In the erythrocytes of a sea turtle (Chelonia mydas), only lysine-rich histones F1 could be detected. One of these fractions (F1b) differed in amino acid composition from the typical F1 histones described in the literature. The F1b histone fraction was not found in turtle liver. Chromatographic analysis of tryptic peptides of the chicken erythrocyte F1 and F2c histones and of the turtle erythrocyte F1a and F1b histones revealed considerable similarities between these four fractions, thus indicating their possible phylogenetic relationships.  相似文献   

17.
The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method “rapid histone purification” (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.  相似文献   

18.
Hepatitis C virus (HCV) core is a highly conserved and multifunctional protein that forms the viral capsid, making it an attractive target for HCV detection and inhibition. Aptamers are in vitro selected, single-stranded nucleic acids (RNA or ssDNA) with growing applicability in viral diagnostics and therapy. We have carried out DNA and RNA in vitro selection against six different variants of HCV core protein: two versions of the full-length protein of genotype 1, and the hydrophilic domain of genotypes 1 to 4. The aptamer populations obtained were analyzed by means of Ultra-Deep Sequencing (UDS), the most abundant sequences were identified and a number of highly represented sequence motifs were unveiled. Affinity (measured as the dissociation constant, Kd) of the most abundant DNA and RNA aptamers were quantified using Enzyme-Linked OligoNucleotide Assay (ELONA)-based methods. Some aptamers with nanomolar or subnanomolar Kd values (as low as 0.4 nM) were the common outcome of DNA and RNA selections against different HCV core variants. They were tested in sandwich and competitive biosensor assays, reaching a limit of detection for HCV core of 2 pM. Additionally, the two most prevalent and high affinity aptamers were assayed in Huh-7.5 reporter cell lines infected with HCV, where they decreased both the viral progeny titer and the extracellular viral RNA level, while increasing the amount of intracellular viral RNA. Our results suggest that these aptamers inhibit HCV capsid assembly and virion formation, thus making them good candidate molecules for the design of novel therapeutic approaches for hepatitis C.  相似文献   

19.
Tagai C  Morita S  Shiraishi T  Miyaji K  Iwamuro S 《Peptides》2011,32(10):2003-2009
There is growing evidence of the antimicrobial properties of histones and histone-derived peptides; however, most of them are specific to lysine (Lys)-rich histones (H1, H2A, and H2B). In the present study, we focused on arginine (Arg)-rich histones (H3 and H4) and investigated their antimicrobial properties in comparison with those of histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against the bacterial outer membrane protease T (OmpT) gene-expressing Escherichia coli strain JCM5491 with calculated 50% growth inhibitory concentrations of 3.8, 10, and 12.7 μM, respectively. A lysate prepared from the JCM5491 cells was capable of strongly, moderately, and slightly fragmenting histones H2B, H3, and H4, respectively. While the lysate prepared from the cells of the ompT-deleted E. coli strain BL21(DE3) did not digest these histones, the ompT-transformed BL21(DE3), termed BL21/OmpT+, cell lysate digested the histones more strongly than the JCM5491 cell lysate. Laser confocal and scanning electron microscopic analyses demonstrated that while histone H2B penetrated the cell membrane of JCM5491 or BL21/OmpT+ cells, histones H3 and H4 remained on the cell surface and subsequently disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. The BL21(DE3) cells treated with each histone showed no bleb formation, but cell integrity was affected and the cell surface was corrugated. Consequently, it is suggested that OmpT is involved in the antimicrobial properties of Arg- and Lys-rich histones and that the modes of antimicrobial action of these histones are different.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号